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Abstract

Bayesian inference is a statistical method which allows one to derive
a posterior distribution, starting from a prior distribution and observed
data. Several approaches have been explored in order to make this pro-
cess differentially private. For example, [6], and [11] proved that, under
specific conditions, sampling from the posterior distribution is already
differentially private. [15], [9], designed differentially private mechanisms
that output a representation of the full posterior distribution.

When the output of a differentially private mechanism is a probabil-
ity distribution, accuracy is naturally measured by means of probabilistic
distances measuring how far this distribution is from the original one.
Some classical examples are total variation distance, Hellinger distance,
χ2-distance, KL-divergence, etc.

In this work, we explore the design space for differentially private
bayesian inference, by considering different metrics and different algo-
rithms we design a mechanism. We focus on two discrete models, the
Beta-Binomial and the Dirichlet-multinomial models, and one probabil-
ity distance, Hellinger distance. Our mechanism can be understood as
a version of the exponential mechanism where the noise is calibrated to
the smooth sensitivity of the utility function, rather than to its global
sensitivity. In our setting, the utility function is the probability distance
we want to use to measure accuracy. To show the usefulness of this mech-
anism we show an experimental analysis comparing it with mechanisms
based on the Laplace mechanism.

1 Introduction

Data analysis techniques are broadly used in various applications in different
areas to improve their services, including disease-medicine service, financial ser-
vice, location service, social network and so on. In order to provide a better
service, large of data are collected from users for analysis. As a consequence, the
data privacy came to be a critical issue. Sensitivity information in data can be
revealed through the analysis results. The key challenge here is to release a pri-
vate analysis results, from which adversary cannot observe individual’s sensitive
information in data.

Plenty of work have been developed to solve this issue, guaranteeing the
privacy in specific data analysis algorithms. They achieved the ε−differential
privacy by adopting either Laplace mechanism or achieved the (ε, δ)−differential
privacy. But they are not giving better accuracy than the differential privacy
mechanism itself. Here, we are proposing mechanism with better accuracy.

Our work is conducted under a Bayesian inference scenario, where the pos-
terior distribution is the analysis result we obtained from the data. Publishing
the posterior distribution inferred from a sensitive dataset can leak information
about the individuals in the dataset. In order to guarantee differential privacy
and to protect the individuals’ data we can add noise to the posterior before
releasing it. The amount of the noise that we need to introduced depends on the
privacy parameter ε and the sensitivity of the inference to small changes in the
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data set. Sensitivity can be computed in many different ways based on which
metric space we consider on the output set of the mechanism. In the literature
on private Bayesian inference ([15, 13]), it is only measured with respect to the
vector of numbers parametrizing the output distribution using, e.g. the `1 norm.
A more natural approach which we explore here, is to measure sensitivity with
respect to a metric on the space of inferred probability distributions. A re-loved
question is that of how to measure accuracy. Again, this can be answered in
different ways based on the metric imposed on the output space, and yet again
only in few works in literature (e.g. [15]) distances between probability measures
have been used for these purposes.

The question that this work aims at answering is whether an approach based
on probability metrics can improve on the accuracy of approaches based on
metrics over the numeric parameters of the distributions. We will see that in
some cases this can happen.
Main contributions.

• We designed a differentially private Bayesian inference mechanism based
on the standard exponential mechanism.

• We explored two ways to improve the accuracy: 1) calibrating noise to the
sensitivity of a metric over distributions (e.g. Hellinger distance (H), f -
divergences, etc. . . ). 2) Using a smooth upper bound on the local sensitiv-
ity and scale the noise to this smooth bound rather than global sensitivity,
to improve the mechanism accuracy.

• A full proof on the newly designed mechanism is (ε, δ)−differential privacy
is given in paper.

• We implemented the new proposed mechanism and other art-of-state mech-
anisms, comparing the performance in terms of accuracy and privacy.

Related Work.
A plentiful of data analysis algorithms have been studied to preserve differen-

tial privacy, including the subspace clustering algorithm [10], the gradient dece-
dent algorithm in deep learning [1], logical regression [3], principle component
analysis [4], probabilitic inference [12] and convergence in statistic estimation
[2], etc.

In Bayesian Inference data analysis, mechanisms are proposed corresponded
to maintain their differential privacy, focusing on 3 different goals: 1) Inherited
differential privacy property of posterior sampling in Bayesian inference. [6],
[15], [16] and [11]. 2) Data sampled and released from posterior distribution
of Bayesian is differentially private [14], [7], [9]. 3) The inference process is
differentially private and the posterior distribution released should be private
itself, in the meantime, with good accuracy. The third topic where our work
focus on is still very new.
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2 Preliminaries

Bayesian Inference.
Given a prior belief Pr(θ) on some parameter θ, and an observation x, the

posterior distribution on θ given x is computed as:

Pr(θ|x) =
Pr(x|θ) · Pr(θ)

Pr(x)

where the expression Pr(x|θ) denotes the likelihood of observing x under a value
of θ. Since we consider x to be fixed, the likelihood is a function of θ. For the
same reason Pr(x) is a constant independent of θ. Usually in statistics the prior
distribution Pr(θ) is chosen so that it represents the initial belief on θ, that is,
when no data has been observed. In practice though, prior distributions and
likelihood functions are usually chosen so that the posterior belongs to the same
family of distributions. In this case we say that the prior is conjugate to the
likelihood function. Use of a conjugate prior simplifies calculations and allows
for inference to be performed in a recursive fashion over the data. Then, we
have:

bysInfer(Pr(x|θ),Pr(θ),x) =
Pr(x|θ) · Pr(θ)

Pr(x)

Beta-binomial System.
In this work we will consider a specific instance of Bayesian inference and one

of its generalizations. specifically, a Beta-binomial mode. We will consider the
situation the underlying data is binomial distribution (∼ binomial(θ)), where
θ represents the parameter –informally called bias– of a Bernoulli distributed
random variable. The prior distribution over θ ∈ [0, 1] is going to be a beta
distribution, beta(α, β), with parameters α, β ∈ R+, and with p.d.f:

Pr(θ) ≡ θα(1− θ)β

B(α, β)

where B(·, ·) is the beta function. The data x will be a sequence of n ∈ N binary
values, that is x = (x1, . . . xn), xi ∈ {0, 1}, and the likelihood function is:

Pr(x|θ) ≡ θ∆α(1− θ)n−∆α

where ∆α =

n∑
i=1

xi. From this, the inference can be easily derived:

bysInfer(binomial(θ), beta(α, β),x) = beta(α+ ∆α, β + n−∆α)

Dirichlet-multinomial Systems.
The beta-binomial model can be immediately generalized to Dirichlet-multinomial,

with underlying data multinomially distributed. The bias is represented by pa-
rameter θ, the vector of parameters of a categorically distributed random vari-
able. The prior distribution over θ ∈ [0, 1]k is given by a Dirichelet distribution,
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dirichlet(α), for k ∈ N, and α ∈ (R+)k, with p.d.f:

Pr(θ) ≡ 1

B(α)
·
k∏
i=1

θαi−1
i

where B(·) is the generalized beta function. The data x will be a sequence of
n ∈ N values coming from a universe X , such that | X |= k. The likelihood
function will be:

Pr(x|θ) ≡
∏
ai∈X

θ∆αi
i ,

with ∆αi =

n∑
j=1

[xj = ai], where [·] represents Iverson bracket notation. Denot-

ing by ∆α the vector (∆α1, . . .∆αk) the inference over θ turns out to be

bysInfer(multinomial(θ), dirichlet(α),x) = dirichlet(α + ∆α)

where + denotes the componentwise sum of vectors of reals.
Differential Privacy.

Definition 1. ε−differential privacy.
A randomized mechanism M : X → Y is differential privacy, iff for any

adjacent1 input x,x′ ∈ X , a metric H over Y and a B ⊆ H(Y), M satisfies:

Pr[H(M(x)) ∈ B] = eε Pr[H(M(x′)) ∈ B].

Definition 2. (ε, δ)−differential privacy.
A randomized mechanism M : X → Y is differential privacy, iff for any

adj(x,x′) ∈ X , a metric H over Y and a B ⊆ H(Y), M satisfies:

Pr[H(M(x)) ∈ B] = eε Pr[H(M(x′)) ∈ B] + δ.

3 Technical Problem Statement and Motivations

We are interested in exploring mechanisms for privately releasing the full poste-
rior distributions derived in section 2, as opposed to just sampling from them.
It’s worth noticing that the posterior distributions are fully characterized by
their parameters, and the family (Beta, Dirichlet distribution) they belong to.
Hence, in case of the Beta-Binomial model we are interested in releasing a pri-
vate version of the pair of parameters (α′, β′) = (α + ∆α, β + n − ∆α), and
in the case of the Dirichlet-multinomial model we are interested in a private
version of α′ = (α + ∆α). [15] and [13] have already attacked this problem
by adding independent Laplacian noise to the parameters of the posteriors.

1Given x,x′ we say that x and x′ are adjacent and we write, adj(x,x′), iff
n∑
i

[xi = x′i] ≤ 1.
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That is, in the case of the Beta-Binomial system, the value released would be:
(α̃, β̃) = (α + ∆̃α, β + n − ∆̃α) where ∆̃α ∼ Lap(∆α, 2

ε ), and where Lap(µ, ν)
denotes a Laplace random variable with mean µ and scale ν. This mechanism
is ε-differentially private, and the noise is calibrated w.r.t. to a sensitivity of 2
which is derived by using `1 norm over the pair of parameters. Indeed, consid-
ering two adjacent data observations x,x′, that, from a unique prior, give rise
to two posterior distributions, characterized by the pairs (α′, β′) and (α′′, β′′)
then |α′−α′′|+ |β′−β′′| ≤ 2. This argument extends similarly to the Dirichelet-
Multinomial system. Details are introduced in Sec. 4.

However, in previous works, the accuracy of the posterior was measured
again with respect to `1 norm. That is, an upper bound was given on

Pr[|α− α̃|+ |β − β̃| ≥ γ]

where (α, β), (α̃, β̃) are as defined above. This accuracy metric is meaningless
when the results released are distributions rather than numerical values. In
contrast, distribution metrics such as f -divergence, Hellinger distance, etc. come
into mind overtly when we are measuring distance between distributions. This
gives us motivation on exploring the design space of mechanisms by considering
different norms (a distribution metric) to compute the sensitivity and provide
guarantees on the accuracy.

Specifically, we will use the Hellinger distance H(·, ·): Given two beta distri-
butions beta(α1, β1), and beta(α2, β2) the following equality holds

H(beta(α1, β1), beta(α2, β2)) =

√
1−

B(α1+α2

2 , β1+β2

2 )√
B(α1, β1)B(α2, β2)

Our choice to use Hellinger distance is motivated by three facts:

• It simplifies calculations in the case of the probabilistic models considered
here.

• It also automatically yields bounds on the total variation distance, which
represents also the maximum advantage an unbounded adversary can have
in distingishing two distributions.

• The accuracy can be improved by using a smooth bound on Hellinger
distance’s local sensitivity. As shown in Fig. 1, taking advantage of the
gap between the global sensitivity and local sensitivity, we can improve
the accuracy by applying an upper bound on local sensitivity instead of
using global sensitivity.
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Figure 1: Sensitivity of H

4 Mechanism Proposition

4.1 Laplace Mechanism Family

4.1.1 using `1 norm metric

Adding noise to the posterior distribution parameters directly, through Laplace
mechanism with post-processing, lapMech(bysInfer,x), producing an output:

lapMech(bysInfer,x) = beta(α+ b∆α+ Y cn0 , β + n− b∆α+ Y cn0 ),

where Y ∼ Lap(0, ∆bysInfer
ε ), a Laplace distribution with location 0 and scale

∆bysInfer
ε in Beta-binomial model; and

lapMech(bysInfer,x) = dirichlet(α1+b∆α1 + Y1cn0 , · · · , αk+bn−
k−1∑
i=1

b∆αi + Yicn0 cn0 ),

where Yi ∼ Lap(0, ∆bysInfer
ε ) in Dirichlet-multinomial model. b·cn0 is taking the

floor value and truncating into [0, n] to make sure the noised posterior is valid.
We use lapMech(x) = beta(α̃, β̃) or dirichlet(α̃) for short. Then release it as

the private posterior distribution.
The sensitivity of the inference process w.r.t. `1 norm in lapMech is:

∆bysInfer ≡ max
x,x′∈{0,1}n,||x−x′||1≤1

||bysInfer(x)− bysInfer(x′)||1,

which is proportional to the dimensionality.

4.1.2 using improved `1 norm metric

Noise added to posterior distribution parameters are scaled to smaller sen-
sitivity in this improved Laplace mechanism. Because in terms of two ad-
jacent data sets x,x′, their posterior distributions by Bayesian inference –
bysInfer(x), bysInfer(x′) – which parameter differs at most in 2 dimensions even
though extended to Dirichlet-multinomial mode, i.e., ∆bysInfer ≤ 2.
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Then it is enough to use sensitivity 1 in 2 dimensions and 2 in higher dimen-
sions, then the improved Laplace mechanism ilapMech(bysInfer,x) is producing
an output:

beta(α+ b∆α+ Y cn0 , β + n− b∆α+ Y cn0 ),

where Y ∼ Lap(0, 1
ε ) in Beta-binomial model; and

dirichlet(α1 + b∆α1 + Y1cn0 , · · · , αk + bn−
k−1∑
i=1

b∆αi + Yicn0 cn0 ),

where Yi ∼ Lap(0, 2
ε ) in Dirichlet-multinomial model.

Both Laplace mechanism and improved one are ε−differential privacy[8].

4.2 Exponential Mechanism Family

In this section, we explore the exponential mechanism family: expMech(·, ·, ·)
by considering Hellinger distance metrics and different sensitivities.

Given a prior distribution βprior = beta(α, β) and a sequence of n observa-
tions x ∈ {0, 1}n, we define the follwing set as candidate set where the mecha-
nisms in this family sample from:

Rpost ≡ {bysInfer(binomial(θ),βprior,x) | x ∈ {0, 1}n}.

For simplicity:

Rpost ≡ {beta(α′, β′) | α′ = α+ ∆α, β′ = β + n−∆α}

over all x ∈ {0, 1}n, where ∆α is as defined in Section 2, and

Rpost ≡ {dirichlet(α′) | α′ = α + ∆α},

over all x ∈ Xn in Dirichlet-multinomial model.
We don’t explicitly parametrize the result by the prior and likelihood, which

from now on we consider fixed and we denote them by βprior and binomial(θ),
multinomial(θ). We use bysInfer(x) to denote the Bayesian inference process
when the other two parameters are fixed.

4.2.1 Standard Exponential Mechanism

Standard exponential mechanism expMech(x, u,Rpost) samples an element from

the candidate setRpost = {r1, r2, · · · rn} with probability proportional to exp( εu(x,r)
2GS ):

Pr
z∼expMech(x,u,Rpost)

[z = r] =
exp( εu(x,r)

2GS )

Σr′∈R exp( εu(x,r′)
2GS )

,
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where u(x, r) is the Hellinger scoring function over candidates, −H(bysInfer(x), r),
and GS is the global sensitivity of the scoring function (i.e. the global sensitivity
of the Bayesian inference w.r.t the Hellinger distance), calculated by:

GS = max
{|x,x′|≤1;x,x′∈Xn}

max
{r∈R}

|H(bysInfer(x), r)−H(bysInfer(x′), r)|

Exponential mechanism is ε−differential privacy[8].

4.2.2 Exponential Mechanism with Hellinger Metric and Local Sen-
sitivity

Exponential mechanism with local sensitivity expMechlocal(x, u,Rpost) share
the same candidate set and utility function as it with standard exponential
mechanism. This outputs a candidate r ∈ R with probability proportional to

exp( εu(x,r)
2LS(x) ):

Pr
z∼expMechlocal(x,u,Rpost)

[z = r] =
exp( εu(x,r)

2LS(x) )

Σr′∈R exp( εu(x,r′)
2LS(x) )

,

where LS(x) is the local sensitivity of scoring function, calculated by:

LS(x) = max
x′∈Xn:adj(x,x′),r∈R

|H(bysInfer(x′), r)−H(bysInfer(x′), r)|.

The exponential mechanism with local sensitivity is non-differential privacy[8].

4.2.3 Exponential Mechanism with Hellinger Metric and Smoothed
Sensitivity

Definition 3. Given data set x of size n, we define γ−smooth sensitivity of
Bayesian inference process w.r.t. the Hellinger distance S(x) is:

S(x) = max
x′′∈{0,1}n

{
1

1
LS(x′′) + γ · d(x,x′′)

}
, (1)

where d is the Hamming distance between two data sets.

Theorem 4.1. Given data set x, the γ−smooth sensitivity of Bayesian inference
process w.r.t. the Hellinger distance S(x) satisfying:
For any adj(x,x′):

1

S(x)
− 1

S(x′)
≤ γ. (2)

Proof. of Theorem. 4.1.
For adj(x,x′) and arbitrary x′′ ∈ {0, 1}n:
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By Equation (1):

S(x) = max
x′′∈{0,1}n

{
1

1
LS(x′′) + γ · d(x,x′′)

}
1

S(x)
= min

x′′∈{0,1}n

{
1

LS(x′′)
+ γ · d(x,x′′)

}
Since d(x,x′′) ≤ d(x,x′) + d(x′,x′′) ≤ 1 + d(x′,x′′):

≤ min
x′′∈{0,1}n

{
1

LS(x′′)
+ γ · (1 + d(x′,x′′))

}
= min

x′′∈{0,1}n

{
γ +

1

LS(x′′)
+ γ · d(x′,x′′)

}
= γ + min

x′′∈{0,1}n

{
1

LS(x′′)
+ γ · d(x′,x′′)

}
= γ +

1

S(x′)

=⇒
1

S(x)
− 1

S(x′)
≤ γ.

Definition 4. expMechsmoo(x) outputs a candidate r ∈ Rpost with probability

Pr
z∼expMechsmoo(x)

[z = r] =
exp
(−ε·u(x,r)

4·S(x)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) .
where u(x, r) = H(bysInfer(x), r) for r ∈ Rpost and S(x) is the γ−smooth sen-
sitivity of H(bysInfer(x),−), calculated from Definition 3 by setting γ = 1.

Mechanisms in Exponential mechanism family also extends to the Dirichlet-
multinomial system dirichlet(α) by rewriting the Hellinger distance as:

H(dirichlet(α1), dirichlet(α2)) =

√
1−

B(α1+α2

2 )√
B(α1)B(α2)

,

and by replacing the Rpost with set of posterior Dirichlet distributions candi-
dates. Also, the smooth sensitivity S(x) in (4.1) will be computed by letting x′

range over all the elements in Xn adjacent to x. Notice that Rpost has
(
n+1
m−1

)
elements in this case. We will denote by expMechDH the mechanism for the
Dirichlet-multinomial system.
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5 Privacy Analysis

5.1 Privacy of Laplace Mechanism Family

Mechanisms in Laplace family are ε−differential privacy by [8].

5.2 Privacy of Exponential Mechanism Family

5.2.1 expMech(, , ) ε−Differential Privacy

Standard exponential mechanism in ε−differential privacy by [8].

5.2.2 expMechlocal(, , ) non-Differential Privacy

Exponential mechanism with local sensitivity non-differential privacy.

5.2.3 expMechsmoo ε−Differential Privacy Proof

Lemma 5.1. expMechsmoo is ε-differential privacy.

Proof. of Lemma 5.1.
By Definition 1, to proof Lemma 5.1, we need to prove:
For any adj(x,x′) ∈ X and any beta distribution r:

Pr
z∼expMechsmoo(x)

[z = r] ≤ eε Pr
z∼expMechsmoo(x′)

[z = r].

By definition 4:

Pr
z∼expMechsmoo(x)

[z = r] =
exp

(−ε·u(x,r)
4·S(x)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

)
=

exp
(−ε·(u(x,r)+u(x′,r)−u(x′,r))

4·S(x)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

)
=

exp
(−ε·(u(x′,r))

4·S(x)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) · exp
(ε · (u(x′, r)− u(x, r))

4 · S(x)

)
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Because S(x) ≥ LS(x) ≥ (u(x′, r)− u(x, r)):

≤
exp
(−ε·(u(x′,r))

4·S(x)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) · exp
( ε

4

)

= exp
( ε

4

)
·

exp
(−ε·(u(x′,r))

4·S(x)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) exp
(ε · (u(x′, r))

4 · S(x′)

)
exp

(−ε · (u(x′, r))

4 · S(x′)

)

= exp
( ε

4

)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) exp
(ε · (u(x′, r))

4
(

1

S(x′)
− 1

S(x)
)
)

Because u(x′, r) = H(bysInfer(x′), r) ≤ 1:

≤ exp
( ε

4

)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) exp
( ε

4
(

1

S(x′)
− 1

S(x)
)
)

Because the property of γ−smooth sensitivity: 1
S(x′) −

1
S(x) ≤ γ:

≤ exp
( ε

4

)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

) exp
( ε

4
· γ
)

= exp
( ε

4
+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑

r′∈Rpost

exp
(−ε·u(x,r′)

4·S(x)

)
Doing the same transformation in the denominator:

= exp
( ε

4
+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x,r′)+u(x′,r′)−u(x′,r′))

4·S(x)

)
= exp

( ε
4

+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x)

)
exp

(−ε·(u(x,r′)−u(x′,r′))
4·S(x)

)
Because S(x) ≥ LS(x) ≥ (u(x, r)− u(x′, r)) =⇒ −ε·(u(x,r′)−u(x′,r′))

4·S(x) ≥ −ε2 :

≤ exp
( ε

4
+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x)

)
exp

(−ε
4

)
= exp

( ε
4

+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x)

)
exp

(−ε
4

)
exp

( ε·(u(x′,r′))
4·S(x′)

)
exp

(−ε·(u(x′,r′))
4·S(x′)

)
= exp

( ε
4

+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x′)

)
exp

(−ε
2

)
exp

(−ε·(u(x,r′))
4 ( 1

S(x) −
1

S(x′) )
)

13



Because u(x′, r) = H(bysInfer(x′), r) ≤ 1 =⇒ −ε·(u(x,r′))
4 ≥ −ε4 :

≤ exp
( ε

4
+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x′)

)
exp

(−ε
4

)
exp

(−ε
4 ( 1

S(x) −
1

S(x′) )
)

Because the property of γ− smooth sensitivity: 1
S(x) −

1
S(x′) ≤ γ =⇒

−ε
4 ( 1

S(x) −
1

S(x′) ) ≥ −ε4 · γ

≤ exp
( ε

4
+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x′)

)
exp

(−ε
4

)
exp

(−ε
4 · γ

)
= exp

( ε
4

+
ε

4
· γ
)
·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑
r′∈Rpost

exp
(−ε·(u(x′,r′)

4·S(x′)

)
exp

(−ε
4 + −ε

4 · γ
)

= e( ε2 + ε
2 ·γ) ·

exp
(−ε·(u(x′,r))

4·S(x′)

)
∑

r′∈Rpost

exp
(−ε·u(x′,r′)

4·S(x′)

)
= e( ε2 + ε

2 ·γ) · Pr
z∼expMechsmoo(x′)

[z = r]

Given γ = 1, ε−differential privacy can be achieved.

6 Accuracy Analysis

6.1 Accuracy Bound for Baseline Mechanisms

6.1.1 Accuracy Bound for Laplace Mechanism

Given Y ∼ Lap(0, b), we have[8]:Pr[|Y | ≥ t · b] = e−t.

Based on this, we get:Pr[|Y | ≥ t] = e−
tε

∆bysInfer , where Y ∼ Lap(0, ∆bysInfer
ε ) in our

setting.

Considering the post-processing (i.e., taking the floor value of Y ) in lapMech,
we have:

Pr
[
bY c = t

]
= Pr[t ≤ Y < t+ 1] =

1

2
(e−

ε(t)
∆bysInfer − e−

ε(t+1)
∆bysInfer ).

when t ≥ 0, and

Pr
[
bY c = t

]
= Pr[t ≤ Y < t+ 1] =

1

2
(e

ε(t)
∆bysInfer − e

ε(t+1)
∆bysInfer ).

when t < 0.
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Let beta(α, β) be the true posterior distribution, i.e., bysInfer(x) = beta(α, β),
and rL be the posterior produced by Laplace mechanism, i.e., rL = beta(α +
bY c, β − bY c). By applying Hellinger distance in our case, we get:

Pr
[
H(bysInfer(x), rL) = H(beta(α, β), beta(α+ t, β − t)

]
= 1

2 (e−
ε(t)

∆bysInfer − e−
ε(t+1)
∆bysInfer )

when t ≥ 0, and

Pr
[
H(bysInfer(x), rL) = H(beta(α, β), beta(α+ t, β − t)

]
= 1

2 (e
ε(t+1)
∆bysInfer − e

ε(t)
∆bysInfer ).

when t < 0.

Unfolding the Hellinger distance formula(H(beta(α, β), beta(α+t, β−t)), we
get:

case t is even

Pr

[
H(bysInfer(x), rL)2 = 1−

t
2−1∏
k=0

√
1−

t
2

a+ k + t
2

·
t
2∏

k=1

√
1−

t
2

β − k

]

=
1

2
(e−

ε(t)
∆bysInfer − e−

ε(t+1)
∆bysInfer )

case t is odd
let t = 2m+ 1

Pr

[
H(bysInfer(x), rL)2 = 1−

Γ(α+ 1
2 )

Γ(α)
·

Γ(β − 1
2 )

Γ(β)

·
m−1∏
k=0

√
(1 +

1

2(α+ k)
)(1 +

1
2 −m

(α+m+ k)
)

·
m∏
k=1

√
(1 +

1

2(β − 1
2 − k)

)(1 +
1
2 −m

(β − 1
2 − k)

)

]

=
1

2
(e−

ε(t)
∆bysInfer − e−

ε(t+1)
∆bysInfer )

Given t with specific values (1, 2, 3 for example), we get following accuracy
equations:

t = 0 Pr
z∼lapMech(x)

[H(bysInfer(x), rL) = 0] = 0.19673467014.

t = 1 Pr
z∼lapMech(x)

[H(bysInfer(x), rL)2 = 1− Γ(α+ 1
2 )

Γ(α) ·
Γ(β− 1

2 )

Γ(β) ] = 0.11932560927.
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t = 2 Pr
z∼lapMech(x)

[H(bysInfer(x), rL)2 = 1−
√

1−
t
2

a+ t
2

·
√

1−
t
2

β ] = 0.07237464051.

In all cases above, probability values are fixed even data size changes, only the
distance are decreasing.

6.1.2 Accuracy Bound for Improved Laplace Mechanism

Accuracy bound for improved Laplace mechanism is obtained from the standard
Laplace Mechanism by replacing the sensitivity of ∆bysInfer with 1 in Beta-
binomial model and 2 in Dirichlet-multinomial model.

Given t with the same specific values (1, 2, 3 as above), we get following
accuracy equations:

t = 0 Pr
z∼lapMech(x)

[H(bysInfer(x), rL) = 0] = 0.31606027941.

t = 1 Pr
z∼lapMech(x)

[H(bysInfer(x), rL)2 = 1− Γ(α+ 1
2 )

Γ(α) ·
Γ(β− 1

2 )

Γ(β) ] = 0.11627207896.

t = 2 Pr
z∼lapMech(x)

[H(bysInfer(x), rL)2 = 1−
√

1−
t
2

a+ t
2

·
√

1−
t
2

β ] = 0.04277410743.

In all cases above, probability values are fixed even data size changes, only the
distance are decreasing.

6.2 Accuracy Bound for expMechsmoo

In Beta-binomial model, we have following formula for accuracy:

Pr
z∼expMechsmoo(x)

[H(bysInfer(x), z) = c] =
exp ( −εc4S(x) )∑

r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) , (3)

c = H(beta(α, β), beta(α+ t, β − t).

6.3 Accuracy Comparison between expMechsmoo, lapMech and
ilapMech

For comparison with Laplace mechanism, we developed the Table 2.
In the case when α = β, there are always 2 symmetric beta distributions

with the same distance from the true posterior, then we have accuracy table as:

When ε and dimensions are fixed, the probability of getting the true poste-
rior, or posterior with certain step from Laplace mechanism is fixed whatever
the data size or prior changes.

By solving following equations:
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c 0 1−
Γ(α+ 1

2
)

Γ(α)
·

Γ(β− 1
2

)

Γ(β)
1−

√
1−

t
2

a+ t
2

·
√

1−
t
2
β

Pr
z∼lapMech(x)

[H(bysInfer(x), z) = c] 0.19673467014 0.11932560927 0.07237464051

Pr
z∼ilapMech(x)

[H(bysInfer(x), z) = c] 0.31606027941 0.11627207896 0.04277410743

Pr
z∼expMechsmoo(x)

[H(bysInfer(x), z) = c] 1∑
r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) exp (
−ε

√
1−

Γ(α+ 1
2

)

Γ(α)
·
Γ(β− 1

2
)

Γ(β)
4S(x)

)∑
r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) exp (

−ε

√√√√√1−

√√√√1−
t
2

a+ t
2

·

√
1−

t
2
β

4S(x)
)∑

r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

)

Table 1: Accuracy Comparison in Theoretical

c 0 1−
Γ(α+ 1

2
)

Γ(α)
·

Γ(β− 1
2

)

Γ(β)
1−

√
1−

t
2

a+ t
2

·
√

1−
t
2
β

Pr
z∼lapMech(x)

[H(bysInfer(x), z) = c] 0.19673467014 0.31606027941 0.19170024978

Pr
z∼ilapMech(x)

[H(bysInfer(x), z) = c] 0.31606027941 0.43233235838 0.1590461864

Pr
z∼expMechsmoo(x)

[H(bysInfer(x), z) = c] 1∑
r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) 2 exp (
−ε

√
1−

Γ(α+ 1
2

)

Γ(α)
·
Γ(β− 1

2
)

Γ(β)
4S(x)

)∑
r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) 2 exp (

−ε

√√√√√1−

√√√√1−
t
2

a+ t
2

·

√
1−

t
2
β

4S(x)
)∑

r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

)

Table 2: Accuracy Comparison in Theoretical

•
1∑

r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) = 0.19673467014 or 0.31606027941

we can get the range where we can do better than lapMech or ilapMech on
outputting the correct answer.

•

exp (
−ε
√

1−
Γ(α+ 1

2
)

Γ(α)
·
Γ(β− 1

2
)

Γ(β)

4S(x) )∑
r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) = 0.11932560927 or 0.11627207896

we can get the range where we can do better than lapMech or ilapMech on
outputting the answer with one step from correct one.

•

2 exp (

−ε

√√√√1−

√
1−

t
2

a+ t
2

·
√

1−
t
2
β

4S(x) )∑
r′∈Rpost

exp
(−ε·H(BI(x),r′)

4·S(x)

) = 0.07237464051 or 0.04277410743

we can get the range where we can do better than lapMech or ilapMech on
outputting the answer with two steps from the correct one.

• Following equations can be in the same way.
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7 Experimental Evaluations

7.1 Efficiency Evaluation

The formula for computing the local sensitivity presented in Sec. 4: LS(x) =
max

x′∈Xn:adj(x,x′),r∈R
|H(bysInfer(x′), r)−H(bysInfer(x′), r)| can be reduced to max

{|x,x′|≤1;x′∈Xn}
H(bysInfer(x), bysInfer(x′))|

by applying the distance triangle property.
Specifically, the maximum value over r ∈ R always achieves at r = bysInfer(x):

LS(x) = max
{|x,x′|≤1;x′∈Xn}

{H(bysInfer(x), bysInfer(x))−H(bysInfer(x′), bysInfer(x))|}

= max
{|x,x′|≤1;x′∈Xn}

{H(bysInfer(x′), bysInfer(x))|}.

This equation is validated by an experimental result shown in Fig. 2. We
calculate the max

{|x,x′|≤1;x′∈Xn}
value for every candidate r ∈ Rpost. It is shown

that maximum value taken when r = bysInfer(x).

Figure 2: Experimental Results for Finding the Local Sensitivity Efficiently

7.2 Accuracy Evaluation

7.2.1 Theoretical Results

In Fig. 3 and 4, we plot on the x-axis the Hellinger distance from the true poste-
rior and on the y-axis the theoretical probabilities of outputting the candidates
with that distance under the different mechanisms. We consider balanced data
sets, which means that in the Beta-Binomial model (Figure 4(a)) the datasets
will consist of 50% 1s and the rest 0s, while for the Dirichelet-Multinomial (Fig-
ure 4(b)) the data will be split in the k = 3 bins with perecentages of: 33%,
33% and 34% in 3 dimensionality. Same concept in 4 dimensionality.

We consider 6 mechanisms in our comparison, including the Laplace mech-
anism, improved Laplace mechanism, standard exponential mechanism, non-
private exponential mechanism (using local sensitivity) and two newly designed
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(a) 2 dimensions with data size 600 (b) 3 dimensions with data size 600

Figure 3: The theory probabilities of outputting candidates in certain distance
from true posterior, with balanced data set and parameters ε = 1.0

(a) 2 dimensions of data size 1000 (b) 2 dimensions of data size 10000

Figure 4: The theory probabilities of outputting candidates in certain distance
from true posterior, with balanced data set and parameters ε = 5.0

mechanisms (one with smooth sensitivity achieving (ε, δ)−dp and the other with
γ sensitivity achieving ε−dp).

In Fig. 3, candidates of smaller distance from true posterior can be out-
putted by expMechsmoo (in blue line) with larger probability than by baseline
Laplace mechanism (in green line). This means expMechsmoo can produce good
results with larger probability than baseline mechanism. However, the improved
Laplace mechanism represented by red line can produce good results with prob-
ability higher than expMechsmoo. It outperforms expMechsmoo.

Increasing the privacy bound ε, we get theoretical results as in Fig. 4. In 2
dimensions, we can perform better than Laplace mechanisms.
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Figure 5: Increasing data size with prior beta(1, 1), balanced datasets and pa-
rameters ε = 1.0

7.2.2 Experimental Results

In this section, we evaluate the accuracy of the mechanisms defined in Section
(4) w.r.t. four variables, including data size, dimensions, data variance, prior
distribution, and some combinations thereof. Every plot is an average over 1000
runs. In all the experiments we set ε = 1.0.
In the following some of the plots show mean error as a function of the datasize
while one is a whiskers-plot where the y-axis shows the average accuracy (or
equivalently, the error) of the mechanisms, and the x-axis, instead shows differ-
ent balanced priors used. The boxes extend from the lower to the upper quartile
values of the data, with a line at the median. A notch on the box around the
median is also drawn to give a rough guide to the significance of difference of
medians; The whiskers extend from the box to show the range of the data. A
blue box in the plots represents our newly designed exponential mechanism’s
behavior– where the sensitivity is calibrated w.r.t Hellinger distance– while the
yellow box next to it represents the performance of a variation of the basic
Laplace mechanism presented in Section (4) with the same settings: that is ε, δ,
data, prior. The variation considered performs a postprocessing on the released
parameters so that they are consistent. For instance when the sum of the noised
parameters is greater than n we will truncate them so that they sum up to n.

Increasing data size with balanced datasets In Figures 5, 6(a) and 6(b)
we still consider balanced data sets of observations. The results show that when
the data size increases, the average errors of expMechsmoo, Laplace mechanism
and decrease. For small datasets, i.e with size less 300 in the case of Beta-
Binomial models, both the baseline Laplace mechanisms and improved Laplace
mechanism outperform expMechsmoo. But for bigger data sets, that is, bigger
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(a) Increasing data size with dirichlet(1, 1, 1)
prior distribution, balanced datasets and pa-
rameters ε = 1.0

(b) Increasing data size with
dirichlet(1, 1, 1, 1) prior distribution,
balanced datasets and parameters ε = 1.0

Figure 6: Observed data set is: (50, 50), varying balanced priors

than 300, or as in Figure 5 where we considered data sets of the order of 15
thousands elements, the expMechsmoo outperforms the baseline Laplace mech-
anism, and asymptotically approaches the improved Laplace mechanism. Simi-
lar experimental tendencies were obtained for the Dirichlet-multinomial model
(Figure 6(a) and 6(b)).

Fixed dataset varying balanced priors In Figure 6, we fix the data set to
be (50, 50), and the parameters the same as before: ε = 1.0 and δ = 10−8 . We
studied the accuracy under different priors, where the priors considered are also
balanced. Similar to the plots above, Figure 6 shows that in the beginning the
baseline Laplace mechanism and improved Laplace mechanism performs better
but the baseline approach is outperformed after a while, and very close to the
improved Laplace mechanism.
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Figure 7: Actual privacy loss of different data size when privacy bound ε = 1.0
in 2 dimensions, prior:beta(1, 1) and balanced data

7.3 Privacy Evaluation

In order to see our privacy behavior, we study the accurate epsilon under con-
crete cases in this section. The (ε, δ) - differential privacy we proved in Sec. 4.2.3
is just an upper bound, we concrete ε should be smaller than upper bound in our
exponential mechanism. We calculate the concrete privacy value in following
ways wrt. the data size, and obtain plots in Fig. 7.

ε = 1.0 is a privacy upper bound, we can observe that the concrete ε values
are smaller than the upper bound. That is to say, we achieved a higher privacy
level than expected.

8 Conclusion and Future Work

From what we have seen in the previous sections we can obtain some preliminary
conclusions. That is, the probabiliy measure approach outperforms the `1-norm
approach in the following cases:

1. expMechsmoo outperforms the baseline approach but not the improved one,
for priors with small parameters.

2. When the prior parameters increase expMechsmoo is comparable with the
improved baseline approach.

These results although very motivating, are still not enough for real world
applications. Hence, we will continue our work in the follwoing directions:

1. For now, we just have a intuitive idea on the accuracy behavior of our
mechanisms, and not a precise formula or bound on it. When do our
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mechanisms perform better than the baseline mechanism and when they
don’t? How much influence will elements in Section 7 have on the accu-
racy? Are there any other important factors we missed? These are all
questions w.r.t. the accuracy that we are going to explore next, and in a
more principled and formal way.

2. Theorem 5.1 provides an upper bound on the privacy loss for expMechsmoo

and expMechDH but not necessarily a tight one. Indeed, experiments have
shown that the actual privacy loss in the experiments can be smaller than
ε. This means that we could improve accuracy, by adding less noise – that
is noise proportional to a higher value of ε– but still achieve (ε, δ)-dp.

3. The choice of the Hellinger distance might seem quite ad-hoc. Hence, it
is worth exploring other distances over distributions. An interesting class
of probability metrics is the family of f -divergences [5].
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