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Objectives

I Design a differentially private Bayesian inference mechanism.
I Improve accuracy by calibrating noise to the sensitivity of a metric over distributions (e.g.

Hellinger distance (H), f -divergences, etc. . . ).

An example of Bayesian inference: the Beta-Binomial model

I Prior on θ : Pθ = beta(α, β), α, β ∈ R+, observed data x = (x1, . . . , xn) ∈ {0, 1}n, n ∈ N.

I Likelihood function: Lθ|x = θ∆α(1− θ)n−∆α, where ∆α =
n∑

i=1

xi .

I Posterior on θ: BI(x) ≡ Pθ|x = beta(α + ∆α, β + n −∆α) ∝ Lθ|x · Pθ.

Differentially private Bayesian inference

I Baseline approach:
. Release beta(α + b∆̃αcn0, β + n − b∆̃αcn0).

. ∆̃α ∼ L(∆α, ∆BI
ε

).
. ∆BI ≡ max

x,x′∈{0,1}n,||x−x′||1≤1
||BI(x)− BI(x′)||1.

. Measure accuracy with a metric over distributions. E.g.
H(f , g)2 ≡ 1−

∫
(
√

f (x)g(x) dx) (f , g densities).

But ∆BI grows linearly with the dimension: too noisy when we
generalize to Dirichlet-Multinomial (DL(·)) model. Figure 1: Sensitivity of H. There is a

gap between Global and Local sensitivity.I Another approach:
. Calibrate noise w.r.t global sensitivity of H: but global sensitivity is still too big.
. Fig. 1 shows that there is a gap between global and local sensitivity of H.

I A different approach:

. Calibrate noise w.r.t. the smooth sensitivity of H.

Our approach: smoothed Hellinger distance based exponential mechanism

We define the mechanismMH which produces an element r in Rpost with probability:

Pr∼MH =
exp

(
−ε·H(BI(x),r)

2·S(x)

)
∑

r∈Rpost
exp

(
−ε·H(BI(x),r)

2·S(x)

)
I Rpost ≡ {beta(α′, β′) | α′ = α + ∆α, β′ = β + n −∆α}. With prior distribution βprior = beta(α, β).
I −H(BI(x), r) denotes the scoring function.
I S(x) ≡ maxx′∈{0,1}n

{
LS(x′) · e−γ·d(x,x′)

}
: smooth sensitivity[1], d is the Hamming distance.

I LS(x′) ≡ max
y∈X n:adj(y ,x′),r∈R

|H(BI(y), r)−H(BI(x′), r)| is the local sensitivity of x′, γ = ln(1− ε

2 ln( δ
2(n+1)

)
).

Preliminary experimental results

Experiments are about three mechanisms and plotted as follows:
I Green: Baseline approach.
I Red: Improved approach by using sensitivity 1 in 2 dimensions and 2 in higher dimensions.

Indeed: we can see the output of the Bayesian inference as a histogram, and
||BI(x)− BI(x′)||1 ≤ 2.

I Blue: MH. The fact that there is only one candidate distribution which achieves the highest
score and different distributions which achieve a sub-optimal score explains the (highest) peaks in
Fig. 2(a) (and Fig. 2(b)).

(a) 2 dimensions with data size 600 (b) 3 dimensions with data size 600 (c) 2 dimensions with data size 100

(d) 2 dimensions, data size ∈ [100, 500] (e) 3 dimensions, data size ∈ [100, 500] (f) 4 dimensions, data size ∈ [100, 600]

Figure 2: Priors are beta(1, 1),DL(1, 1, 1) and DL(1, 1, 1, 1) (except for Figure 2(c)) , balanced datasets, ε = 1.0 and δ = 10−8.

Conclusion

IMH outperforms the baseline approach but not the improved one, for priors with small
parameters.

I When the prior parameters increaseMH is comparable with the improved baseline approach.
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