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Preliminary experimental results

>

Design a differentially private Bayesian inference mechanism.

mprove accuracy by calibrating noise to the sensitivity of a metric over distributions (e.g.
Hellinger distance (), f-divergences, etc... ).

>

» Green: Baseline approach.
» Red: Improved approach by using sensitivity 1 in 2 dimensions and 2 in higher dimensions.

Experiments are about three mechanisms and plotted as follows:

Indeed: we can see the output of the Bayesian inference as a histogram, and

An example of Bayesian inference: the Beta-Binomial model

» Prior on 0 : Py = beta(a, 3), a, 3 € RT, observed data x = (x1,...,x,) € {0,1}",n € N.

» Likelihood function: Ly = 04%(1 — 6)"~ 2%, where Aa = Zx,-.

=1

BI(x) — BI(x')||; < 2
» Blue: M 4. The fact that there is only one candidate distribution which achieves the highest
score and different distributions which achieve a sub-optimal score explains the (highest) peaks in

Fig. 2(a) (and Fig. 2(b)).

Discrete Probabilities

» Posterior on 0: Bl(x) = Pyx = beta(a + Ac, B4+ n — Aax) x Ly - Po.

Differentially private Bayesian inference

» Baseline approach:
> Release beta(a + \_Aajo, B+ n—
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Different Priors on 6

| Aa 7).
> ABI = max Bl(x) — BI(x)||;.
x,x'€{0,1},||x—x’|[1<L1 H ( ) ( )Hl

> Measure accuracy with a metric over distributions. E.g.

H(F,g)?=1— [(/F(x)g(x)dx) (f, g densities).
But ABI grows linearly with the dimension: too noisy when we
generalize to Dirichlet-Multinomial (DL(-)) model.

(c) 2 dimensions with data size 100

(a) 2 dimensions with data size 600 (b) 3 dimensions with data size 600

+ 1,100 — a), beta(a, 101 — a))
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Figure 1: Sensitivity of . There is a
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gap between Global and Local sensitivity.
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» Another approach:

> Calibrate noise w.r.t global sensitivity of : but global sensitivity is still too big.
> Fig. 1 shows that there is a gap between global and local sensitivity of H..
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Different Data sizes

(d) 2 dimensions, data size € [100, 500] (e) 3 dimensions, data size € [100, 500] (f) 4 dimensions, data size € [100, 600]

» A different approach: Figure 2: Priors are beta(1,1),DL(1,1,1) and DL(1,1,1,1) (except for Figure 2(c)) , balanced datasets, € = 1.0 and 6 = 10~3.

> Calibrate noise w.r.t. the smooth sensitivity of 7.
Conclusion

Our approach: smoothed Hellinger distance based exponential mechanism

» M4 outperforms the baseline approach but not the improved one, for priors with small
parameters.
» When the prior parameters increase My is comparable with the improved baseline approach.

We define the mechanism My, which produces an element r in R with probability:

—e-H(BI(x),r)
eXp( 2.5(x) )

—e-H(BI(x),r
ZreRpost exp ( Z-g(x() ) ))
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