# TYPE SYSTEM **FOR**

Presenter: Jiawen Liu

Joint Work: Marco Gaboardi, Weihao Qu,

Deepak Garg, Jonathan Ullman

**University at Buffalo** School of Engineering and Applied Sciences



## **Data Analysis**



Adaptive Data Analysis X input

some queries rely on the results of other queries



### Adaptive Data Analysis - example



### Motivation

Generalization Error / Overfitting



Adaptivity in analysis will propagate the overfitting

#### Gaussian Mechanism Existing Methods – 1 Query Guarantee Laplace Mechanism Threshold out **Guarantee generalization error Mechanisms** Data / analysis data set query over X sample Population result **Data Analysis** Guarantee will lose in multiple adaptive queries

### Motivation – Multiple Queries Guarantee

Where to apply mechanisms

Adaptivity Depth



How many mechanisms needed

Light or intense mechanism



Guarantee
Generalization
Error for
Multiple
adaptive queries

• • •

# **OUR WORK**

analyze the <u>adaptivity depth</u> for data analysis program.



X input

### Novelty

use mechanism to encapsulate queries and combine them.



### Challenges in Language Design

adaptivity depends on the Runtime Information

represent the probabilistic computing

provide precise Upper Bound for adaptivity depth

### Refinement Types

singleton type: int[ [ ]

# representing the run time information

index term: indicate the value of an integer

domain: N

### **Expressions**

$$\delta(q)$$

uniform  $v_1 v_2$ 

the range  $[v_1, v_2]$ , where sample from

represent the mechanism  $\delta$  applied over a query q

parameterized const represents values sampled from distributions

### Typing Judgement

### Annotated typing judgement:

approximates an upper bound on adaptivity depth of expressions



### Typing Judgement

Important rule for calculating the adaptivity:

$$\vdash_{\mathbf{Z}} q : \tau$$
 $\vdash_{\mathbf{Z}+1} \delta(q) : \tau$ 

#### Soundness

step-indexed logical relations





**fundamental theorem** 



if  $\vdash_z e: \tau$  then  $e \in [\![\tau]\!]_e^Z$ 

## **System Overview**



**Threshold out** 

### System Overview – Simple Example



# **THANKS**

