
Verifying Differential Privacy in Floating-Point Computation

Abstract

The programs implementing differentially private algorithms can be formally verified via ex-
isting logics and tools, such as apRHL+[2]. These verifications rely on the assumption that these
implementations whose underlining computation is real number based without computation er-
ror. However, in reality, these algorithms are mostly implemented under finite precision, which
accounts for computation errors and causes critical failures in preserving differential privacy.

We develop a method for formally verifying differential privacy of algorithms implemented
based on floating-point computation. Our method extends the relational program logic apRHL+,
and provides an operational semantics under floating-point computation, which work together to
provide the formal verification.

We demonstrate our method via an algorithm: the Snapping mechanism proposed in [8], where
its differential privacy is theoretically proved even with floating-point computation error. We
implement our logic and example verifications in Coq.

1 Introduction

Differential privacy proposed by Dwork, McSherry, Nissim, and Smith [4] is considered the gold stan-
dard for privacy-preserving computations. Existing methods are able to formally verify the differential
privacy of most of the popular algorithms [2]. However, these verifications are based on the ideal im-
plementations of these algorithms without computation error. While in reality, the implementations of
these algorithms are not ideal, mostly in floating-point computation with computation errors. These
computation errors can cause critical failures in preserving differential privacy, which is identified in
the literature [1, 5, 7, 8, 6]. In the meantime, some algorithms claim to preserve differential privacy
even in floating-point computation, for instance:

• The Snapping mechanism, which is an improved version of the implementation of Laplace
mechanism in floating-point computation, by adding extra rounding and clamping operations.
(See [8].)

• The Base-2 Exponential mechanism, which is a revised version of the Exponential mechanism,
by altering the base in Exponential mechanism from e into 2. (See [6].)

• The Discrete Gaussian mechanism, which is a discrete version of the Gaussian mechanism.
(See [3].)

Unfortunately, existing pen-and-paper proofs of these algorithms use complex computation error ap-
proximations, which are hard to understand and error-prone.

This gives us the motivation that can we develop methods for formally and automatically verifying
these algorithms by considering the errors that arose during the floating-point computation.

To verify the differential privacy property of the algorithms implemented in floating-point com-
putation, we extend the relational program logic apRHL+ from [2]. Then we compose it with an

1

operational semantics designed for approximating the floating-point computation error. We prove the
soundness via the methodology of probabilistic coupling and approximate lifting shown by Barth et
al. [2].

2 System Overview

We propose a formal analysis of differentially private algorithms under finite computation, whose
proof does not exclusively rely on the existing tools of differential privacy. The paper is composed of
three main components.

The language and operational semantics We firstly design an operational semantics for approxi-
mating the floating-point computation errors on a standard imperative language with only the assign-
ment, distribution sampling, and sequence commands.

In this language, the expressions (in real number precision) are evaluated into floating-point values
vF through floating-point computation with computation error arose during evaluation.

In order to track the computation error propagated in floating-point computation, we attach a pair
of real values (vR1 , vR2) to approximate the computation error in the environment for every variable. To
be specific, a variable is mapped to (vF

(vR1 ,vR2)
), where vF is a value evaluated from some expressions

in floating-point precision, and vR1 , vR2 are lower and upper bounds of the floating-point computation
error propagated when evaluating into vF: m,e ⇒ vF

(vR1 ,vR2)
. For example, [],1+1 ⇒ 2(1.99,2.01), where

±0.01 are the relative computation errors relevant to the machine epsilon η.
The operational semantics for programs takes an environment m and a program p and returns a

distribution over environment m′: m, p ⇒ Di str (m′). For example, [], x
$←− unif(0,1] ⇒ let 0.1(0.1,0.1) =

Junif(0,1]K in unit([x 7→ 0.1(0.1,0.1)]), where we assume the sample from discrete floating-point num-
bers produce no error, accounting for the 0.1(0.1,0.1) in the environment.

An extended apRHL+ To verify the differential privacy, we adopt the proof principles of probabilis-
tic coupling and approximate lifting and work with a relational program logic apRHL+.

We conceive it as a floating-point computational variant of apRHL+ based on the new operational
semantics, i.e., in the environments, variables are mapping to floating-point values together with their
lower and upper bounds on computation errors, instead of a single real number. The judgments are of
the form: p1 ∼ε p2 :Φ⇒Ψ, where p1 and p2 are programs and Φ and Ψ are assertions on pairs of the
newly defined environments. Each assertion refers to two copies x〈1〉, 〈2〉 of each program variable x,
where tagged variables refer to the value of x in executions of p1 and p2 respectively. Different from
apRHL+, each assertion can refer to any values to which the variables are mapped in the environment
through annotations on the top right of variables. For example, x1, x2 and x3 refer to vF, vR1 and vR2
respectively if x is mapped to vF

(vR1 ,vR2)
in the environment.

Informally, a judgment of the above form is valid if the two distributions produced by the exe-
cutions of p1 and p2 on any two initial memories satisfying the precondition Φ are related by the
ε-lifting (formally defined in 1) of the postcondition Ψ in floating-point computation. For example,
unif(0,1] and unif(0,1] are related by the ε-lifting of the relation Φ, {(x, y) ∈ (0,1]F× (0,1]F|x = eεy},
where unif(0,1] is the uniform distribution on floating-point numbers range over (0,1].

Further, we introduce two proof rules representing the approximate probabilistic liftings for the
process of sampling from uniform distribution —the key component of implementing the Laplace
mechanism in floating-point computation— the unif+ and unif-:

2

` x
$←− unif(0,1] ∼ε y

$←− unif(0,1] : >⇒∀l ,r ∈ [0,1]R. l ≤ x1〈1〉 ≤ r → (eεl ≤ y1〈2〉 ≤ eεr ∧ y1〈2〉 ≤ 1);

` x
$←− unif(0,1] ∼ε y

$←− unif(0,1] : >⇒∀l ,r ∈ [0,1]R. l ≤ x1〈1〉 ≤ r → (e−εl ≤ y1〈2〉 ≤ e−εr ≤ 1),
The two rules represent the ε-lifting of two uniform distribution on floating-point numbers range over
(0,1] w.r.t. to postconditions respectively. Although this process itself is not differentially private, its
properties can be formally captured by approximate probabilistic liftings and be combined to show
privacy for a larger program.

New privacy proofs We provide the first formal verification of the Snapping mechanism, which is
a variant of the Laplace mechanism in floating-point computation with extra rounding and clamping
operations. Its privacy proof is based on the floating-point computation error approximation, which
cannot be formally verified by any of the existing tools. In contrast, we prove its privacy in floating-
point computation within our logic.

We plan to formalize the language and the proof of the algorithm in Coq.

3 Syntax

The language is defined as follows.
In the language, vR is in the domain of real number R, vR ∈ R. vF is in the domain of floating point
number F, vF ∈ F. Furthermore, F is a subset of R allowing the vF be represented in R without lose of
precision. On the other hand, vR sacrifices its precision when casted into F. The type FR×R represents
the base type of values, composed of a floating-point value vF and a pair of real-number values vR. In
environment., the variables are mapped to (vF

(vR,vR)
) of the type FR×R.

Programs p ::= x = e | x
$←−µ | p; p

Expr e ::= vR | x | e ∗e | ◦ (e)
Binary Operation ∗ ::= + | − | × | ÷
Unary Operation ◦ ::= ln | − | b·e | clampB (·)
Value v ::= vF

(vR,vR)
Distr µ ::= unif(0,1] | unif{−1,1}
Error er r ::= (vR, vR)
Env m ::= · | m[x 7→ (vF

(vR,vR)
)]

Type τ ::= F | R | FR×R

Semantics. The denotational semantics are defined as follows.
Env ×E xpr →V alue

JeKm ∈ {
vF

(vRl ,vRu)
| m,e ⇒ (vF

(vRl ,vRu)
)
}

Env ×Distr→Distr(V alue)

Junif(0,1]Km ∈ {
(vF

(vRl ,vRu)
) | vF←U(0,1]∧ vRl = vRu = vF

}
Junif{−1,1}Km ∈ {

(−1(−1,−1)), (1(1,1)) | each w.p. 0.5
}

3

Env ×pr og →Distr(Env)

Jx
$←−µKm = let vF

(vRl ,vRu)
= JµKm in unit(m[x 7→ vF

(vRl ,vRu)
])

Jx = eKm = unit(m[x 7→ JeKm])
Jp1; p2Km = let m1 = Jp1Km in Jp2Km1

In the semantics, m,e ⇒ (vFer r) reads given an environment m, the expression e is transited to vF with
error bound er r = (vRl , vRu) in floating point transition semantics, s.t. vRl ≤ vF ≤ vRu . The semantics is
presented in Figure. 1. m, p ⇒ m′ represents, given an environment m, the program p is transited to a
new environment m′. The U(0,1] ∈Distr(F) is the mathematic uniform distribution over floating point
values ranging over (0,1].

4 Judgement and Validity

Definition 1 (ε−lifting [2])
Two sub-distributions µ1 ∈ Distr(D1), µ2 ∈ Distr(D2) are related by the ε−lifting of Ψ ⊆ D1 ×D2,
written µ1Ψ

#(ε)µ2, if there exist two witness sub-distributions µL ∈Distr(D1×D2) and µR ∈Distr(D1×
D2) s.t.:

1. π1(µL) =µ1 and π2(µR) =µ2;

2. supp(µL) ⊆Ψ and supp(µR) ⊆Ψ; and

3. ∆ε(µL ,µR) ≤ 0.0.

Definition 2 (Λ equivalent)
Given two floating point values v1 and v2, if for some floating point value vF which is a multiple of
Λ:

vF− Λ
2
≤ v1 < vF+ Λ

2
∧ vF− Λ

2
≤ v2 < vF+ Λ

2
,

then v1 and v2 are Λ equivalent, i.e., v1 ≡Λ v2 ≡Λ vF.

Definition 3 (tagged variable)
Let X〈1〉 and X〈2〉 be the sets of tagged variables, finite sets of variable names tagged with 〈1〉 or 〈2〉
respectively:

X〈1〉 = {x〈1〉 | x ∈X} and X〈2〉 = {x〈2〉 | x ∈X},

where X is a finite set of variable names.

Assertion. We consider a set A of assertions (predicates) from first order logic by the following
grammar:

Logic Expr. E ::= L | V | E+E | E−E | E ·E | ln(E) | −E | eE

Assert. A ::= e i 〈1/2〉 = e i 〈1/2〉 | e i 〈1/2〉 < e i 〈1/2〉) | e i 〈1/2〉 ≤ e i 〈1/2〉 | e i 〈1/2〉 ≡Λ e i 〈1/2〉
| E=E | · · · | E= e i 〈1/2〉 | · · · | e i 〈1/2〉 =E | · · ·
| > | ⊥ | A∧A | A∨A | ¬A | A→A | ∀L ∈D. A | ∃L ∈D. A

We typically use capital Greek letters (Φ,Ψ, · · ·) for predicates. e〈1/2〉 denotes an expression where
program variables are tagged with 〈1〉 or 〈2〉. e i 〈1/2〉 represents an expression where program vari-
ables are projected to the i th value from its triples, where i ∈ {1,2,3}. D is a specfic domain, it could

4

Θ,e ⇒ vF(vR,vR) : Env ×E xpr ⇒V alue

Θ(x) = (vF
(vR

¯
,v̄R)

)

Θ, x ⇒ (vF
(vR

¯
,v̄R)

)
VAR

vF = fl(vR) vF 6= vR vR ≥ 0

Θ, vR⇒ (
vF

(vR

(1+η) ,vR(1+η))

) VAL

vF = fl(vR) vF 6= vR vR < 0

Θ, vR⇒ (
vF

(vR(1+η), vR

(1+η))

) VAL-NEG vF = fl(vR) vF = vR

Θ, vR⇒ (vF(vR,vR))
VAL-EQ

Θ,e1 ⇒ (vF
1(vR1

¯
,v̄R1)

) Θ,e2 ⇒ (vF
2(vR2

¯
,v̄R2)

) vF1 ≥ 0 vF2 ≥ 0 vF = fl(vF1 ∗ vF2) ∗ ∈ {×,÷}

Θ,e1 ∗e2 ⇒
(
vF

(
vR1
¯
∗vR2

¯(1+η) ,(v̄R1 ∗v̄R2)(1+η))

) BOP-PP

Θ,e1 ⇒ (vF
1(vR1

¯
,v̄R1)

) Θ,e2 ⇒ (vF
2(vR2

¯
,v̄R2)

) vF1 < 0 vF2 < 0 vF = fl(vF1 ∗ vF2) ∗ ∈ {×,÷}

Θ,e1 ∗e2 ⇒
(
vF

(
¯

vR1 ∗ ¯
vR2

(1+η) ,(vR1
¯
∗vR2

¯
)(1+η))

) BOP-NN

Θ,e1 ⇒ (vF
1(vR1

¯
,v̄R1)

) Θ,e2 ⇒ (vF
2(vR2

¯
,v̄R2)

) vF1 ≥ 0 vF2 < 0 vF = fl(vF1 ∗ vF2) ∗ ∈ {×,÷}

Θ,e1 ∗e2 ⇒
(
vF

((v̄R1 ∗vR2
¯

)(1+η),
vR1
¯
∗ ¯

vR2
(1+η))

) BOP-PN

Θ,e1 ⇒ (vF
1(vR1

¯
,v̄R1)

) Θ,e2 ⇒ (vF
2(vR2

¯
,v̄R2)

) vF1 < 0 vF2 ≥ 0 vF = fl(vF1 ∗ vF2) ∗ ∈ {×,÷}

Θ,e1 ∗e2 ⇒
(
vF

((vR1
¯
∗v̄R2)(1+η),

¯
vR1 ∗vR2

¯(1+η))

) BOP-NP

Θ,e1 ⇒ (vF
1(vR1

¯
,v̄R1)

) Θ,e2 ⇒ (vF
2(vR2

¯
,v̄R2)

) vF = fl(vF1 ∗ vF2) vF ≥ 0 ∗ ∈ {+,−}

Θ,e1 ∗e2 ⇒
(
vF

(
vR1
¯
∗vR2

¯(1+η) ,(v̄R1 ∗v̄R2)(1+η))

) BOP-P

Θ,e1 ⇒ (vF
1(vR1

¯
,v̄R1)

) Θ,e2 ⇒ (vF
2(vR2

¯
,v̄R2)

) vF = fl(vF1 ∗ vF2) vF < 0 ∗ ∈ {+,−}

Θ,e1 ∗e2 ⇒
(
vF

((vR1
¯
∗vR2

¯
)(1+η),

¯
vR1 ∗ ¯

vR2
(1+η))

) BOP-N

Θ,e ⇒ (vF
1(vR

¯
,v̄R)

) vF = fl(◦(vF1)) vF ≥ 0

Θ,◦(e) ⇒
(
vF(◦(vR

¯
)

(1+η) ,(◦(v̄R))(1+η)
)) UOP-P

Θ,e ⇒ (vF
1(vR

¯
,v̄R)

) vF = fl(◦(vF1)) vF < 0

Θ,◦(e) ⇒
(
vF(

◦(vR
¯

)(1+η), ◦(¯vR)
(1+η)

)) UOP-N

Figure 1: Semantics of Transition for Expressions with Relative Floating Point Error

5

be integers, reals, floating-point numbers or range of them, etc.
The logic context are maps L→V; usually written ρ. The logic expression E is interpreted under real
number computation, such as: JE1 +E2Kρ = JE1Kρ+ JE2Kρ , etc.

Assertion Interpretation. Assertions are interpreted as relations between environments, i.e., set of
paired environments. Let Φ be an assertion, by the definition of A, we have JAK as:
Je i 〈1〉 = e i 〈2〉Kρ = {(m1,m2) | (JeKm1)i = (JeKm2)i }; · · · ; JE1 =E2Kρ = {(m1,m2) | JE1Kρ < JE2Kρ}; · · · ;
Je i 〈1〉 <EKρ = {(m1,m2) | (JeKm1)i < JEKρ}; · · · ; JE≤ e i 〈2〉Kρ = {(m1,m2) | JEKρ ≤ (JeKm2)i }; · · · ;
JA1 ∧A2Kρ =

{
(m1,m2) | (m1,m2) ∈ JA1Kρ∧ (m1,m2) ∈ JA2Kρ

}
; J>Kρ = {(m1,m2)}; J⊥Kρ = {};

JA1 ∨A2Kρ =
{
(m1,m2) | (m1,m2) ∈ JA1Kρ∨ (m1,m2) ∈ JA2Kρ

}
; J¬AKρ =

{
(m1,m2) | (m1,m2) ∉ JAKρ

}
;

JA1 →A2Kρ =
{
(m1,m2) | (m1,m2) ∈ JA1Kρ → (m1,m2) ∈ JA2Kρ

}
;

J∀L ∈D. AKρ =
{
(m1,m2) | ∀v ∈D. (m1,m2) ∈ JAKρ[L→v]

}
;

J∃L ∈D. AKρ =
{
(m1,m2) | ∃v ∈D. (m1,m2) ∈ JAKρ[L→v]

}
.

Judgment. The judgments are defined in following form:

p1 ∼ε p2 :Φ⇒Ψ.

Here, p1 and p2 are programs and Φ and Ψ are assertions on pairs of memories. Each assertion can
refer to two copies x〈1〉, x〈2〉 of each program variable x, where these tagged variables refer to the
value of x in the execution of p1 and p2 respectively.
A judgment is valid, written ` p1 ∼ε p2 : Φ0 ⇒ Φ, if for any two environments m1 and m2 satisfy-
ing precondition Φ0, i.e., (m1,m2) ∈ JΦ0K, there exists a lifting of Φ relating the output distributions:
(Jp1Km1) JΦK#(ε) (Jp2Km2).
Fig. 3 presents the main rules from apRHL+ [2] excluding the while and condition rules which are
not defined in out syntax, as well as the sampling rule, which we generalized in extended apRHL. The
extended rules in Fig. 2 represent the lifting proved in soundness theorem.

`: pr og ×pr og ×R× Asser t × Asser t

` x
$←− unif(0,1] ∼ε y

$←− unif(0,1] : >⇒∀l ,r ∈ [0,1]R. l ≤ x1〈1〉 ≤ r → (eεl ≤ y1〈2〉 ≤ eεr ∧ y1〈2〉 ≤ 1)
Unif+

` x
$←− unif(0,1] ∼ε y

$←− unif(0,1] : >⇒∀l ,r ∈ [0,1]R. l ≤ x1〈1〉 ≤ r → (e−εl ≤ y1〈2〉 ≤ e−εr)
Unif-

` x1
$←−µ∼0 x2

$←−µ : >⇒ (x1
2〈2〉) = (x1

1〈1〉)∧ (x2
2〈2〉) = (x2

1〈1〉)∧ (x3
2〈2〉) = (x3

1〈1〉)
Null

∀v. a multiple of Λ

` x1 = by1eΛ ∼0 x2 = by2eΛ : y1
1〈1〉 ≡Λ v → y1

2〈2〉 ≡Λ v ⇒ (x1
1〈1〉 = v) → (x1

2〈2〉 = v)
Round

Figure 2: Rules Extended from apRHL+

Lemma 1 (Discrete Support of Distribution)
∀p,m,µ, s.t. µ ∈Distr(Env) and JpKm =µ. Then supp(µ) is discrete.

6

` x1 = e1 ∼0 x2 = e2 :Φ[e1/x1〈1〉][e2/x2〈2〉] ⇒Φ
Assn

p1 ∼ε p2 :Φ1 ⇒Φ′
1 p ′

1 ∼ε′ p ′
2 :Φ′

1 ⇒Φ2

` p1; p ′
1 ∼ε+ε′ p2; p ′

2 :Φ1 ⇒Φ2
Seq

p1 ∼ε p2 :Φ′
1 ⇒Φ′

2 Φ1 ⇒Φ′
1 Φ′

2 ⇒Φ2 ε≤ ε′

p1 ∼ε′ p2 :Φ1 ⇒Φ2
Conseq

Figure 3: Proving Rules from apRHL

Proof. By induction on p, we have the proof of this Lemma in detailed versions.

Theorem 2 (Soundness)
∀p1, p2, ` p1 ∼ε p2 :Φ0 ⇒Φ, ∀m1, m2 s.t Φ0: m1 JΦ0K m2, then

(Jp1Km1)JΦK#(ε)(Jp2Km2)

.

Proof. By induction on the judgment ` p1 ∼ε p2 : Φ0 ⇒ Φ, we have the proof of this Lemma in
detailed versions.

Theorem 3

U(0,1] R#(ε) U(0,1],

where R = {
(x, y) ∈ F×F | ∀LR,RR ∈ [0,1]R. LR ≤ x ≤ RR→ (eεLR ≤ y ≤ eεRR∧ y ≤ 1)

}
.

Proof of Theorem 3 seen in full version.

Theorem 4

U(0,1] R#(ε) U(0,1],

where R = {
(vF1 , vF2) ∈ F×F | ∀LR,RR ∈ (0,1]R.(LR ≤ vF1 ≤ RR→ e−εLR ≤ vF2 ≤ e−εRR)

}
.

Proof of Theorem 4 seen in full version.

7

5 Examples

Definition 4 (Snapping Mechanism: Snap(a) : A →Distr(R))
Given privacy parameter ε, the Snapping mechanism Snap(a) is defined as:

u
$←− unif(0,1); s

$←− unif{−1,1}; x = f (a)+ 1

ε
× s × ln(u); y = bxeΛ; z = clampB (y)

where f (a) represents a value that the query function f be evaluated over input database a ∈ A, ε is
the privacy parameter, B is the clamping argument and Λ is the rounding argument satisfying λ= 2k

where 2k is the smallest power of 2 greater or equal to the 1
ε .

Theorem 5 (The Snap mechanism is ε−differentially private)

seen in full version.

8

References

[1] Victor Balcer and Salil Vadhan. Differential privacy on finite computers. arXiv preprint
arXiv:1709.05396, 2017.

[2] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving
differential privacy via probabilistic couplings. In LICS 2016.

[3] Clément Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential
privacy. arXiv preprint arXiv:2004.00010, 2020.

[4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensi-
tivity in Private Data Analysis. In TCC, 2016.

[5] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. Preserving differential privacy under finite-
precision semantics. Theoretical Computer Science, 655:92–108, 2016.

[6] Christina Ilvento. Implementing the exponential mechanism with base-2 differential privacy. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pages 717–742, 2020.

[7] Ryan McKenna and Daniel R Sheldon. Permute-and-flip: A new mechanism for differentially
private selection. NIPS 2020.

[8] Ilya Mironov. On significance of the least significant bits for differential privacy. In CCS 2012,
2012.

9

	Introduction
	System Overview
	Syntax
	Judgement and Validity
	Examples

