
Program Analysis for Adaptivity Analysis

Contents

1 Query While Language - Extended 2
1.1 Labeled Language . 2
1.2 Trace-based Operational Semantics for Query While Language 3

2 Event and Trace 7
2.1 Event . 7
2.2 Trace . 7

3 Dependency and Adaptivity 9
3.1 Dependency . 9
3.2 Execution Based Dependency Graph . 11
3.3 Trace-based Adaptivity . 11
3.4 Example From Limitation . 12
3.5 Trace-based Adaptivity . 12

4 AdaptFun 14
4.1 A guide to the static program analysis framework . 14

4.1.1 Graph Estimation . 14
4.1.2 Adaptivity Computation . 14

4.2 Vertices Estimationn . 15
4.3 Edge and Weight Estimation . 15

4.3.1 Abstract Execution Control Flow graph . 15
4.3.2 Edge Estimation with Interprocedure Call . 19
4.3.3 Weight Estimation via Path Sensitive Reachability Bound Analysis 21

4.4 Program-Based Data Dependency Graph Generation . 24
4.5 Adaptivity Upper Bound Computation . 24

5 Examples and Experimental Results 32
5.1 Examples . 32
5.2 Implementation Results . 35

Appendices 43

A Proofs of Lemmas in Section 1, 2 and 3 43

B Soundness of AdaptFun 45

C Soundness of AdaptFun with Dependency Graph and Adaptivity Extension 48

1

D Soundness of flowsTo with Language and Adaptivity Extension 51
D.1 Inversion Lemmas and Helper Lemmas . 54

E Soundness of Reachability Bounds Estimation 63

F Soundness of Edge Weight Estimation 66

G Soundness of Adaptivity Computation Algorithm 67

H Conditional Completeness of Adaptivity Computation Algorithm 70

1 Query While Language - Extended

1.1 Labeled Language

Arithmetic Operators ⊕a ::= + | − | × | ÷ | max | min
Boolean Operators ⊕b ::= ∨ | ∧
Relational Operators ∼ ::= < | ≤ | ==
Arithmetic Expression a ::= n | x | a ⊕a a | log a | sign a
Boolean Expression b ::= true | false | ¬b | b ⊕b b | a ∼ a
Expression e ::= v | a | b | [e, . . . ,e]
Value v ::= n | true | false | [] | [v, . . . , v]

| (r, x1, . . . , xn) := c
Query Expression ψ ::= α | a | ψ⊕a ψ | χ[a]
Query Value α ::= n | χ[n] | α⊕a α | n ⊕a χ[n] | χ[n]⊕a n
Label l ::= (n ∈N∪ {in,ex}) | (l ,n)

Labeled Command c ::= [x ← e]l | [
x ← query(ψ)

]l | [
skip

]l | while [b]l do c | if ([b]l ,c,c)
| [fun]l : x(r, x1, . . . , xn) := c | [x ← call (x,e1, . . . ,en)]l | c;c

Event ε ::= (x, l , v,•) | (x, l , v,α) Assignment Event
| (b, l , v,•) Testing Event

Trace τ ::= [] | τ :: ε

We use following notations to represent the set of corresponding terms:

VAR : Set of Variables
VAL : Set of Values
QVAL : Set of Query Values
C : Set of Commands
E : Set of Events
Easn : Set of Assignment Events
Etest : Set of Testing Events
L : Set of Labels
VAL : Set of Labeled Variables
DB : Set of Databases
T : Set of Traces
T0(c) : Set of Initial Traces, where all the input variables of the program c are initialized.
QD : Domain of Query Results

2

Environment ρ :T→VAR→VAL∪ {⊥}

ρ(τ::(x, l , v,•))x , v ρ(τ::(y, l , v,•))x , ρ(τ)x, y 6= x ρ(τ::(b, l , v,•))x , ρ(τ)x
ρ(τ::(x, l , v,α))x , v ρ(τ::(y, l , v,α))x , ρ(τ)x, y 6= x ρ([])x ,⊥

1.2 Trace-based Operational Semantics for Query While Language

〈τ, a〉 ⇓a v : Trace × Arithmetic Expr ⇒ Arithmetic Value

〈τ,n〉 ⇓a n

ρ(τ)x = v

〈τ, x〉 ⇓a v

〈τ, a1〉 ⇓a v1 〈τ, a2〉 ⇓a v2 v1 ⊕a v2 = v

〈τ, a1 ⊕a a2〉 ⇓a v

〈τ, a〉 ⇓a v ′ log v ′ = v

〈τ, log a〉 ⇓a v

〈τ, a〉 ⇓a v ′ sign v ′ = v

〈τ, sign a〉 ⇓a v

〈τ,b〉 ⇓b v : Trace × Boolean Expr ⇒ Boolean Value

〈τ,false〉 ⇓b false 〈τ,true〉 ⇓b true

〈τ,b〉 ⇓b v ′ ¬v ′ = v

〈τ,¬b〉 ⇓b v

〈τ,b1〉 ⇓b v1 〈τ,b2〉 ⇓b v2 v1 ⊕b v2 = v

〈τ,b1 ⊕b b2〉 ⇓b v

〈τ, a1〉 ⇓a v1 〈τ, a2〉 ⇓a v2 v1 ∼ v2 = v

〈τ, a1 ∼ a2〉 ⇓b v

〈τ,e〉 ⇓e v : Trace × Expression ⇒ Value

〈τ, a〉 ⇓a v

〈τ, a〉 ⇓e v

〈τ,b〉 ⇓b v

〈τ,b〉 ⇓e v

〈τ,e1〉 ⇓e v1 · · · 〈τ,en〉 ⇓e vn

〈τ, [e1, · · · ,en]〉 ⇓e [v1, · · · , vn] 〈τ, v〉 ⇓e v

〈τ,ψ〉 ⇓q α : Trace × Query Expr ⇒ Query Value

〈τ, a〉 ⇓a n

〈τ, a〉 ⇓q n

〈τ,ψ1〉 ⇓q α1 〈τ,ψ2〉 ⇓q α2

〈τ,ψ1 ⊕a ψ2〉 ⇓q α1 ⊕a α2

〈τ, a〉 ⇓a n

〈τ,χ[a]〉 ⇓q χ[n] 〈τ,α〉 ⇓q α

The trace based operational semantics rules are defined in Figure 1.

Definition 1 (Label Increase). Label Increase + :L→N→L, increase a label l by a natural number
n:

n +n′, n′′ n,n′ ∈N∧〈[],n +n′〉 ⇓a n′′ (l ,n)+n′, (l +n′,n′′) n,n′ ∈N∧〈[],n +n′〉 ⇓a n′′

The case of (l ,n)+n′ will never happen during evaluation. By Operational semantics, the only
place the label increase is in rule fun-def, c ′ = (c)+n , where c is the function body. By the rule fun-call,
and the label augment in Definition 3, the function body c will never be augmented.

3

Command × Trace−→Command × Trace 〈c,τ〉 −→ 〈c ′,τ′〉

〈[skip]l ,τ〉 −→ 〈[skip]l ,τ〉
skip

ε= (x, l , v,•)

〈[x ← a]l ,τ〉 −→ 〈[skip]l ,τ::ε〉
assn

〈τ,ψ〉 ⇓q α query(α) = v ε= (x, l , v,α)

〈[x ← query(ψ)]l ,τ〉 −→ 〈[skip]l ,τ::ε〉
query

〈τ,b〉 ⇓b true ε= (b, l ,true,•)

〈 while [b]l do c,τ〉 −→ 〈c; while [b]l do c,τ::ε〉
while-t

〈τ,b〉 ⇓b false ε= (b, l ,false,•)

〈 while [b]l , do c,τ〉 −→ 〈[skip]l ,τ::ε〉
while-f

〈c1,τ〉 −→ 〈c ′1,τ′〉
〈c1;c2,τ〉 −→ 〈c ′1;c2,τ′〉 seq1

〈c2,τ〉 −→ 〈c ′2,τ′〉
〈[skip]l ;c2,τ〉 −→ 〈c ′2,τ′〉

seq2
〈τ,b〉 ⇓b true ε= (b, l ,true,•)

〈 if ([b]l ,c1,c2),τ〉 −→ 〈c1,τ::ε〉
if-t

〈τ,b〉 ⇓b false ε= (b, l ,false,•)

〈 if ([b]l ,c1,c2),τ〉 −→ 〈c2,τ::ε〉
if-f

c ′ = c+n ε= (x, l , (r, x1, . . . , xn) := c ′,•)

〈[fun]l : x(r, x1, . . . , xn) := c,τ〉 −→ 〈[skip]l ,τ::ε〉
fun-def

〈τ, f 〉 ⇓e (r, x1, . . . , xn) := c 〈[x1 ← e1](l ,1); . . . ; [xn ← en](l ,n),τ〉 −→∗ 〈[skip](l ,n),τ1〉
〈[c](l),τ1〉 −→∗ 〈[skip]l ,τ′〉 〈τ′,r 〉 ⇓e v ε= (x, l , v,•)

〈[x ← call (f ,e1, . . . ,en)
]l ,τ〉 −→ 〈[skip]l ,τ′ :: ε〉

fun-call

Figure 1: Trace-based Operational Semantics for Language.

4

Definition 2 (Command Label Increase). Command Label Increase (·)+n :C→C, increase the label in
command by n.

([x ← e]l)+n , [x ← e]l+n

(
[
x ← query(ψ)

]l)+n ,
[
x ← query(ψ)

]l+n

(
[
skip

]l)+n ,
[
skip

]l+n

(while [b]l do c ′)+n , while [b]l+n do (c ′)+n

(if ([b]l ,c1,c2))+n , if ([b]l+n , (c1)+n , (c2)+n)
([fun]l : x(r l , x1, . . . , xn) := c)+n , [fun]l+n : x(r l , x1, . . . , xn) := (c)+n

([x ← call (x,e1, . . . ,en)]l)+n , [x ← call (x,e1, . . . ,en)]l+n

(c1;c2)+n , (c1)+n ; (c2)+n

Definition 3 (Command Label Augment). Command Label Augment [·]l :C→C, augment the label in
command with a label l in order to record the calling site.[

[x ← e]l ′
]

l , [x ← e](l ,l ′)[[
x ← query(ψ)

]l ′
]l

,
[
x ← query(ψ)

](l ,l ′)[[
skip

]l ′
]l

,
[
skip

](l ,l ′)[
while [b]l ′ do c ′

]l
, while [b](l ,l ′) do (c ′)l[

if ([b]l ′ ,c1,c2)
]l

, if ([b](l ,l ′), (c1)l , (c2)l)[
[fun]l ′ : x(r l , x1, . . . , xn) := c

]l
, [fun](l ,l ′) : x(r l , x1, . . . , xn) := c[

[x ← call (x,e1, . . . ,en)]l ′
]l

, [x ← call (x,e1, . . . ,en)](l ,l ′)

[c1;c2]l , [c1]l ; [c2]l

The labeled variables and assigned variables are set of variables annotated by a label. We use
LV represents the universe of all the labeled variables and AVc ∈ P(VAR×N) ⊂ LV and LVc ∈
P(VAR×L) ⊆ LV, represents the the set of assigned variables and labeled variables for a labeled
command c, defined in Definition 5 and 4.
FV : e →P(VAR), computes the set of free variables in an expression. To be precise, FV (a), FV (b)
and FV (ψ) represent the set of free variables in arithmetic expression a, boolean expression b and
query expression ψ respectively. Labeled variables in c is the set of assigned variables and all the free
variables showing up in c with a default label i n. The free variables showing up in c, which aren’t
defined before be used, are actually the input variables of this program.

Definition 4 (Assigned Variables (AV :C→P(VAR×N))).

AVc ,



{xl } c = [x ← e]l

{xl } c = [x ← query (ψ)]l

AVc1 ∪AVc2 c = c1;c2

AVc ∪AVc2 c = if ([b]l ,c1,c2)
AVc ′ c = while ([b]l ,c ′)

Definition 5 (labelled Variables (LV :C→P(LV)).

LVc ,



{xl }∪FV (e)i n c = [x ← e]l

{xl }∪FV (ψ)i n c = [x ← query (ψ)]l

LVc1 ∪LVc2 c = c1;c2

LVc ∪LVc2 ∪FV (b)i n c = if ([b]l ,c1,c2)
LVc ′ ∪FV (b)i n c = while ([b]l ,c ′)

5

We also defined the set of query variables for a program c, it is the set of variables set to the result
of a query in the program formally in Definition 6.

Definition 6 (Query Variables (QV : C→P(LV))). Given a program c, its query variables QV(c) is
the set of variables set to the result of a query in the program. It is defined as follows:

QV(c),



{} c = [x ← e]l

{xl } c = [x ← query (ψ)]l

QV(c1)∪QV(c2) c = c1;c2

QV(c1)∪QV(c2) c = if ([b]l ,c1,c2)
QV(c ′) c = while ([b]l ,c ′)

It is easy to see that a program c’s query variables is a subset of its labeled variables, QV(c) ⊆ LV(c).
Every labeled variable in a program is unique, formally as follows with proof in Appendix A.

Lemma 1.1 (Uniqueness of the Labeled Variables). For every program c ∈C and every two labeled
variables such that xi , y j ∈ LV(c), then xi 6= y j .

∀c ∈C, xi , y j ∈L . xi , y j ∈ LV(c) =⇒ xi 6= y j .

6

2 Event and Trace

2.1 Event

Event projection operators πi projects the i th element from an event:
πi :E→VAR∪Boolean Expression∪N∪VAL∪QVAL

Free Variables: FV : e →P(VAR), the set of free variables in an expression.
FV (ψ) is the set of free variables in the query expression ψ.

Definition 7 (Equivalence of Query Expression). Two query expressions ψ1, ψ2 are equivalent, denoted
as ψ1 =q ψ2, if and only if

∀τ ∈T . ∃α1,α2 ∈QVAL . (〈τ,ψ1〉 ⇓q α1 ∧〈τ,ψ2〉 ⇓q α2)
∧(∀D ∈DB,r ∈ D . ∃v ∈VAL . 〈τ,α1[r /χ]〉 ⇓a v ∧〈τ,α2[r /χ]〉 ⇓a v)

.

where r ∈ D is a record in the database domain D. As usual, we will denote by ψ1 6=q ψ2 the negation
of the equivalence.

Definition 8 (Event Equivalence). Two events ε1,ε2 ∈E are equivalent, denoted as ε1 = ε2 if and only
if:

π1(ε1) =π1(ε2)∧π2(ε1) =π2(ε2)∧π3(ε1) =π3(ε2)∧π4(ε1) =q π4(ε2)

As usual, we will denote by ε1 6= ε2 the negation of the equivalence.

Definition 9 (Events Different up to Value (Diff)). Two events ε1,ε2 ∈ Ear e Different up to Value,
denoted as Diff(ε1,ε2) if and only if:

π1(ε1) =π1(ε2)∧π2(ε1) =π2(ε2)
∧(

(π3(ε1) 6=π3(ε2)∧π4(ε1) =π4(ε2) = •)∨ (π4(ε1) 6= •∧π4(ε2) 6= •∧π4(ε1) 6=q π4(ε2))
)

2.2 Trace

Definition 10 (Trace Concatenation, ++ :T→T→T). Given two traces τ1,τ2 ∈T, the trace concatena-
tion operator ++ is defined as:

τ1++τ2,
{
τ1 τ2 = []
(τ1++τ′2) :: ε τ2 = τ′2 :: ε

Definition 11. (An Event Belongs to A Trace) An event ε ∈E belongs to a trace τ, i.e., ε ∈ τ are defined
as follows:

ε ∈ τ,


true τ= τ′ :: ε′∧ε= ε′

ε ∈ τ′ τ= τ′ :: ε′∧ε 6= ε′

false τ= []
(1)

As usual, we denote by ε ∉ τ that the event ε doesn’t belong to the trace τ.

We introduce a counting operator cnt :T→N→N whose behavior is defined as follows,

cnt(τ :: (x, l , v,•), l), cnt(τ, l)+1 cnt(τ :: (b, l , v,•), l), cnt(τ, l)+1 cnt(τ :: (x, l , v,α), l), cnt(τ, l)+1
cnt(τ :: (x, l ′, v,•), l), cnt(τ, l), l ′ 6= l cnt(τ :: (b, l ′, v,•), l), cnt(τ, l), l ′ 6= l cnt(τ :: (x, l ′, v,α), l), cnt(τ, l), l ′ 6= l
cnt([], l), 0

7

We introduce an operator ι : T→VAR→L∪ {⊥}, which takes a trace and a variable and returns the
label of the latest assignment event which assigns value to that variable. Its behavior is defined as
follows,

ι(τ :: (x, l ,_,_))x , l ι(τ :: (y, l ,_,_))x , ι(τ)x, y 6= x ι(τ :: (b, l , v,•))x , ι(τ)x ι([])x ,⊥

The operator TL :T→P(L) gives the set of labels in every event belonging to a trace, whoes behavior
is defined as follows,

TL(τ :: (_, l ,_,_)]), {l }∪TL(τ) TL([]), {}

If we observe the operational semantics rules, we can find that no rule will shrink the trace. So we
have the Lemma 2.1 with proof in Appendix A, specifically the trace has the property that its length
never decreases during the program execution.

Lemma 2.1 (Trace Non-Decreasing). For every program c ∈ C and traces τ,τ′ ∈ T, if 〈c,τ〉 →∗

〈skip,τ′〉, then there exists a trace τ′′ ∈T with τ++τ′′ = τ′

∀τ,τ′ ∈T,c . 〈c,τ〉→∗ 〈skip,τ′〉 =⇒ ∃τ′′ ∈T . τ++τ′′ = τ′

Since the equivalence over two events is defined over the query value equivalence, when there is
an event belonging to a trace, if this event is a query assignment event, it is possible that the event
showing up in this trace has a different form of query value, but they are equivalent by Definition 7. So
we have the following Corollary 2.0.1 with proof in Appendix A.

Corollary 2.0.1. For every event and a trace τ ∈T, if ε ∈ τ, then there exist another event ε′ ∈E and
traces τ1,τ2 ∈T such that τ1++[ε′]++τ2 = τ with ε and ε′ equivalent but may differ in their query value.

∀ε ∈E,τ ∈T . ε ∈ τ =⇒ ∃τ1,τ2 ∈T,ε′ ∈E . (ε ∈ ε′)∧τ1++[ε′]++τ2 = τ

8

3 Dependency and Adaptivity

3.1 Dependency

To define the may dependency relation on two labeled variables, we rely on the limited information at
hand - the trace generated by the operational semantics. In this end, we first define the May-Dependency
between events, and use it as a foundation of the variable may-dependency relation.

We compare two events by defining the Diff(ε1,ε2), we use ψ1 =q ψ2 and ψ1 6=q ψ2 to notate
query expression equivalence and inquivalence.

Definition 12 (Events Different up to Value (Diff)). Two events ε1,ε2 ∈E are Different up to Value,
denoted as Diff(ε1,ε2) if and only if:

π1(ε1) =π1(ε2)∧π2(ε1) =π2(ε2)
∧(

(π3(ε1) 6=π3(ε2)∧π4(ε1) =π4(ε2) = •)∨ (π4(ε1) 6= •∧π4(ε2) 6= •∧π4(ε1) 6=q π4(ε2))
)

For a program, its labeled variables and assigned variables are sub set of the labeled variables
LV. We use AV(c) ∈P(VAR×N) ⊂LV and LV(c) ∈P(VAR×L) ⊆LV for them. FV : e →P(VAR),
computes the set of free variables in an expression. We also define the set of query variables for a
program c, QV :C→P(LV). It is easy to see that a program c’s query variables is a subset of its labeled
variables, QV(c) ⊆ LV(c). We have the operator TL : T → L, which gives the set of labels in every
event belonging to a trace. Then we introduce a counting operator cnt :T→N→N, which counts the
occurrence of of a labeled variable in the trace, whose behavior is defined as follows,

cnt(τ :: (_, l ,_,_), l), cnt(τ, l)+1 cnt(τ :: (_, l ′,_,_), l), cnt(τ, l), l ′ 6= l cnt([], l), 0

The full definitions of these above operators can be found in the appendix.

Definition 13 (Value Sequence seq(τ, x l)).

seq(τ :: (x, l , v,•), x l), seq(τ) :: v seq(τ :: (x, l , v,α), x l), seq(τ) ::α seq([]), []
seq(τ :: (y, j ,_,_), x l), seq(τ) y 6= x ∨ j 6= l

Definition 14 (Difference Sequence Diffseq(τ1,τ2, x l)). Let s1 = seq(τ1, x l)∧ s2 = seq(τ2, x l) be the
value sequence of x l on τ1 and τ2, and smax be the sequence with longer length and smi n the shorter
one, then their difference sequence is defined as follows,

Diffseq(τ1,τ2, x l),
{(smi n[k], smax [k]) | smi n[k] 6= smax [k],k = 0, . . . , len(smi n)}
∪{(·, smax [k]) | len(smi n) ≤ len(smax)k = len(smi n), . . .len(smax)}

Definition 15 (Event May-Dependency). .
An event ε2 is in the event may-dependency relation with an assignment event ε1 ∈Easn in a program c
with a hidden database D and a trace τ ∈T denoted as DEPe(ε1,ε2, [ε1]++τ++[ε2],c,D), iff

∃τ0,τ1,τ′ ∈T,ε′1 ∈Easn,c1,c2 ∈C . Diff(ε1,ε′1)∧

(∃ε′2 ∈E .

 〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ++[ε2]〉∧ 〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[ε′2]〉∧
Diff(ε2,ε′2)∧cnt(τ,π2(ε2)) = cnt(τ′,π2(ε′2))


∨∃τ3,τ′3 ∈T,εb ∈Etest . 〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ++[εb]++τ3〉∧ 〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[(¬εb)]++τ′3〉∧

TLτ3 ∩TLτ′3 =;∧cnt(τ′,π2(εb)) = cnt(τ,π2(εb))∧ε2 ∈ τ3 ∧ε2 6∈ τ′3

)

9

Our event May-Dependency relation of two events ε1 ∈Easn and ε2 ∈E, for a program c and hidden
data base D is w.r.t to a trace [ε1]++τ++[ε2]. ε1 ∈ Easn is an assignment event, because only a change
on the assignment event will affect the execution trace, according to our operational semantics. In
order to observe the changes of ε2 under the modification of ε1, this trace [ε1]++τ++[ε2] starts with
ε1 and ending with ε2. The May-Dependency relation considers both the value dependency and
value control dependency as discussed above. The relation can be divided into two parts naturally in
Definition 15(line 2−4, 5−8 respectively, we think it start from line 1). The idea of the event ε1 may
depend on ε2 can be briefly described: We have one execution of the program as reference (See line 2
and 6 , for the two kinds of dependency). When the value assigned to the first variable in ε1 is modified,
the reference trace τ1++[ε1] is modified correspondingly as τ1++[ε′1]. We use Diff(ε1,ε′1) at line 1 to
express this modification, which guarantees that ε1 and ε′1 only differ in their assigned value and are
equal on variable name and label. We perform a second run of the program by continuing the execution
of the same program from the same execution point, but with the modified trace τ1++[ε′1] (See line 3, 7).
The expected may dependency will be caught by observing two different possible changes (See line
4,8 respectively) when comparing the second execution with the reference one.

In the first part, (line 2−4 of Definition 15) we witness the appearance of ε′2 in the second execution,
and a variation between ε2 and ε′2 on their value. We have special requirement Diff(ε2,ε′2), , which
guarantees that they have the same variable name and label but only differ in their evaluated values. In
particularly for query, if ε2 and ε′2 are generated from query requesting, then Diff(ε2,ε2) guarantees
that they differ in their query value rather than the query requesting result. Additionally, in order to
handle the multiple occurrence of the same event through iterations of the while loop, where ε2 and ε′2
could be in different while loop, we restrict the occurrence times of ε2’s label in the first(reference) trace
equals to the occurrence times of ε′2’s label in the second trace, through cnt(τ,π2(ε2)) = cnt(τ′,π2(ε′2)).

In the second part (line 5− 8 of Definition 15) , we witness the disappearance of ε2 through
observing the change of a testing event εb . In order to change the appearance of 5yhan event, the
command that generates ε2 must not be executed in the second execution. The only way to control
whether a command will be executed, is through the change of a guard’s evaluation result in the if or
while command. So we first observe the testing event εb changes into ¬εb in the second execution,
following with the disappearance of ε2 in the second trace.
In the same way, we restrict the occurrence times of εb’s label in the two traces being equal through
cnt(τ′,π2(εb)) = cnt(τ,π2(εb)) to handle the while loop. Again, in particularly for query, we observe
the disappearance based on the query value equivalence. Considering a program’s all possible execu-
tions(with respect to initialized user input), among all events generated during these executions and the
variables and labels of these events are corresponding to the two labeled variables, as long as there is
one pair of events satisfying the Event May-Dependency relation in Definition 15, then we say the two
variables satisfy Variable May-Dependency relation in Definition 16.

Definition 16 (Variable May-Dependency). .
A variable x l2

2 ∈ LV(c) is in the variable may-dependency relation with another variable x l1
1 ∈ LV(c) in

a program c, denoted as DEPvar(x l1
1 , x l2

2 ,c), if an only if.

∃ε1,ε2 ∈Easn,τ ∈T,D ∈DB . π1(ε1)π2(ε1) = x l1
1 ∧π1(ε2)π2(ε2) = x l2

2 ∧DEPe(ε1,ε2,τ,c,D)

A variable y j ∈ LV(c) is in the may-dependency relation with another variable xi ∈ LV(c) in a program
c, w.r.t. an initial trace τ0 ∈T0(c) and two witness traces τ1,τ2 ∈T, denoted as DEP(xi , y j ,τ1,τ2,τ0,c),
if an only if

∃D ∈DB,τ′0 ∈T . (∀z l 6= xi . ρ(τ0, z l) = ρ(τ′0, z l))∧〈c,τ0〉→∗ 〈[skip]l ,τ0++τ1〉∧〈c,τ′0〉→∗ 〈[skip]l ,τ′0++τ2〉
∧Diffseq(τ1,τ2, y j) 6= ;

10

We denote T0(c) as the set of initial traces in which all the input variables in c are initialized.

3.2 Execution Based Dependency Graph

The variable May-Dependency relation gives us the edges, we define the execution based dependency
graph.

Definition 17 (Execution Based Dependency Graph). Given a program c, its Execution-Base Depen-
dency Graph Gtrace(c) = (Vtrace(c),Etrace(c),Wtrace(c),Qtrace(c)) is defined as follows,

Vtrace(c) := {(x l , w) | w :T→N∧x l ∈ LV(c)
∧∀τ ∈T0(c),τ′ ∈T . 〈c,τ〉→∗ 〈skip,τ++τ′〉 =⇒ w(τ) = cnt(τ′, l)}

Etrace(c) := {(xi , w, y j) | xi , y j ∈ LV(c)∧w ∈P(T→N)∧∃τ ∈T0(c),τ1,τ2 ∈T . DEP(xi , y j ,τ1,τ2,τ0,c)
∧∀τ0 ∈T0(c) . w(τ0) = max{|Diffseq(τ1,τ2, y)|∀τ1,τ2 ∈T . DEP(xi , y j ,τ1,τ2,τ0,c)}}

There are two components of the execution-based dependency graph.
The vertices Vtrace(c) is a set of pairs, (x l , w) ∈LV×(T→N), with a labeled variable as first component
and its weight w the second component. Weight w for x l is a function w : T → N mapping from
a starting trace to a natural number. When program executes under this starting trace τ, 〈c,τ〉 →∗

〈skip,τ++τ′〉, it generates an execution trace τ′. This natural number is the evaluation times of the
labeled command corresponding to the vertex, computed by the counter operator w(τ) = cnt(τ′, l).
We can see in the execution-based dependency graph of twoRounds in Figure 3(b) in main paper, the
weight of vertices in the while loop is ρ(τ)k, which depends on the value of the user input k specified
in the starting trace τ.
The directed edges Etrace(c) is a set of triples (xi , w, y j) ∈ LV× (T0 → N)×LV, with two labeled
variables (from xi pointing to y j) and a weight w for this edge. The edges are constructed directly
from our variable may-dependency relation. For any two vertices xi and y j in Vtrace(c), if there exists
two witness traces τ1,τ2 and an initial trace τ0 ∈T0 such that, they satisfy the variable may-dependency
relation DEP(xi , y j ,τ1,τ2,τ0,c) , there is a direct edge. The weight of the edge is a function w :T0 →N,
where given an initial trace τ0, it of the edge is the maximum length of their difference sequence
between all pairs of the witness traces τ1,τ2 of their dependency relation. In most data analysis
programs c we are interested, there are usually some user input variables, such as k in twoRounds. We
denote T0(c) as the set of initial traces in which all the input variables in c are initialized, it is also
reflected in Wtrace(c).

3.3 Trace-based Adaptivity

Given a program c’s execution-based dependency graph Gtrace(c), we define adaptivity with respect to
an initial trace τ0 ∈T0(c) by the finite walk in the graph, which has the most query requests along the
walk. We show the definition of a finite walk as follows.

Definition 18 (Finite Walk (k)). .
Given the execution-based dependency graph Gtrace(c) = (Vtrace(c),Etrace(c),Wtrace(c),Qtrace(c)) of
a program c, a finite walk k in Gtrace(c) is a function k : T→ sequence of edges. For a initial trace
τ0 ∈T0(c), k(τ0) is a sequence of edges (e1 . . .en−1) for which there is a sequence of vertices (v1, . . . , vn)
such that:

11

• ei = (vi , wi , vi+1) ∈ Etrace(c) for every 1 ≤ i < n, and ei appears in (e1 . . .en−1) at most wi (τ0)
times.

• every (vi , wi) ∈ Vtrace(c) and vi appears in (v1, . . . , vn) at most wi (τ0) times.

The length of k(τ0) is the number of vertices in its vertices sequence, i.e., len(k)(τ0) = n.

We use WK(Gtrace(c)) to denote the set containing all finite walks k in Gtrace(c); and kv1→v2 ∈
WK(Gtrace(c)) with v1, v2 ∈ Vtrace(c) denotes the walk from vertex v1 to v2 .
We are interested in queries, so we need to recover the variables corresponding to queries from the
walk. We define the query length of a walk, instead of counting all the vertices in k’s vertices sequence,
we just count the number of vertices which correspond to query variables in this sequence.

Definition 19 (Query Length of the Finite Walk(lenq)). .
Given the execution-based dependency graph Gtrace(c) = (Vtrace(c),Etrace(c)) of a program c, and a
finite walk k ∈WK(Gtrace(c)). The query length of k is a function lenq(k) :T→N, such that with an
initial trace τ0 ∈T0(c), lenq(k)(τ0) is the number of vertices which correspond to query variables in
the vertices sequence of the walk k(τ0) (v1, . . . , vn) as follows,

lenq(k)(τ0) = |(v | v ∈ (v1, . . . , vn)∧ v ∈QV(c)
)|.

3.4 Example From Limitation

Example 3.1 (Accurate Adapativity for Multiple Rounds Single Example). The program’s adaptivity
in our formal model, in Definition 20 also comes across an over-approximation on the program’s
intuitive adaptivity rounds. It is resulted from difference between its weight calculation and the variable
may-dependency definition. It occurs when the weight is computed over the traces different from the
traces used in witness the variable may-dependency relation.

As the program in Figure 2(a), which is a variant of the multiple rounds strategy, named multipleRoundSingle(k)
with input k. In this algorithm, at line 7 of every iteration, a query query(χ[y]+p) based on previous
query results stored in p and y is asked by the analyst like in the multiple rounds strategy. The
difference is that only the query answers from the one single iterations (j = k−2) are used in this query
query(χ[y]+p). Because the execution trace updates p using the constant 0 for all the iterations
where (j 6= k −2) at line 10 after the query request at line 7. In this way, all the query answers stored
in p will not be accessed in next query request at line 7 in the iterations where (j 6= k −2). Only query
answer at one single iteration where (j = k −2) will be used in next query request query(χ[y]+p)
at line 7. So the adaptivity for this example is 2. However, our adaptivity model fails to realize
that there is only dependency relation between p7 and p7 in one single iteration, not the others. As
shown in the execution-based dependency graph in Figure 2(b), there is an edge from p7 to itself
representing the existence of Variable May-Dependency from p7 on itself, and the visiting times of
labeled variable p7 is wk (τ0) with a initial trace τ0. As a result, the walk with the longest query length
is p7 → ··· → p7 → y4 → z1 with the vertex p7 visited wk (τ0), as the dotted arrows. The adaptivity
based on this walk is 2. The AdaptFun is able to give us 2, as an accurate bound w.r.t this definition.

3.5 Trace-based Adaptivity

Definition 20 (Adaptivity of a Program). .
Given a program c, its adaptivity A(c) is function A(c) :T→N such that for an initial trace τ0 ∈T0(c),

A(c)(τ0) = max
{
lenq(k)(τ0) | k ∈WK(Gtrace(c))

}
12

multipleRoundsSingle(k)[
j ← k

]0;
[
z ← query(0)

]1;

while
[

j > 0
]2

do([
y ← query(χ[z]+ y)

]3;

if (
[

j 6= 2
]4,

[
y ← 0

]5,
[
skip

]6)[
j ← j −1

]7
)
;

(a)

z1 : w1
1

y3 : wk
1

y5 : wk
0

j 0 : w1
0

j 8 : wk
0

m
a p t o 2 if

k
>

2

τ0 → ρ(τ0,k)

(b)
Figure 2: (a) The multi rounds single example (b) The execution-based dependency graph.

13

Figure 3: The overview of AdaptFun

4 AdaptFun

In this section, we present our static program analysis for computing an upper bound on the adaptivity
of an arbitrary program c, as we define in last section.

4.1 A guide to the static program analysis framework

In order to have the upper bound of the adaptivity of a program c, we design a program analysis
framework AdaptFun. It can be divided as two steps: 1) to construct a weighted depdenency graph
based on c. 2) to find a path in this graph, which is used to estimate an upper bound on the adaptivity
of c.

4.1.1 Graph Estimation

According to the dependency graph we use in adaptivity definition, we want to build a similar graph
to over-approximate the Execution-Based Dependency Graph (in Definition 17). The construction
considers the vertices, edges, and the weight of every node, as well as some annotations which marks
the query usage. The overall picture of this step is organized as follows.

1. Vertices are the assigned variables with unique labels, which is extracted directly from the
program, see Section 4.2 without extra static analysis technique

2. The edge between vertices considers both control flow and data flow, See Section 4.3.2

3. Every vertex and edge come with a weight, which tells the maximal times each vertex and edge
can be visited in realistic execution. This weight is estimated by a reachability bound analysis on
each vertex, See Section 4.3.3.

4. Finally, with all the ingredients ready, we construct the final approximated program-based
dependency graph in Section 4.4

Overall, this program-based graph has a similar topology structure as the Execution-Based Depen-
dency Graph. It has the same vertices and query annotations, but approximated edges and weights. We
call the graph generated by static analysis techniques, static analysis dedendency graph.

4.1.2 Adaptivity Computation

Likewise the adaptivity is defined as a finite walk in the execution based depdenency graph, our static
estimation on this adaptivity also relies on finding a path in the static analysis depdenency graph.

14

The construction of the stastic analysis dependency graph is of great value of showing some useful
properties of the target program, such as dependency between variables, the execution upper bound
of a certian command, while the key novelty is our path searching algorithm, which connects all the
information we need in the static anlaysis dependency graph and provides us a sound over-estimation
of adaptivity! In order to get a sound but precise upper bound, we will discuss some challenges in
finding the ’appropriate’ path in the graph, and how our algorithm responds to these challengs. We
present the path seaching algorithm in Section 4.5.

4.2 Vertices Estimationn

The first component of every vertex in the static analysis dependency graph are actually identical as the
Execution-Based Dependency Graph, which are assigned variables in the program annotated with the
unique label(line number). These vertices are collected by statically scanning the program, like what
we do for vertices of its Execution-Based Dependency Graph. The vertices are defined formally as
follows.

Vprog
0(c),

{
(x l , w) ∈LV×Ain

∣∣∣ x l ∈ LV(c)
}

where Ain is the set of arithmetic expressions over N and program’s input variables. The weight w for
every vertex will be computed in following step in Section 4.3.3.

4.3 Edge and Weight Estimation

Since the edges of the execution-based graph of a program relies on the dependency relation, which
handles both control flow and data flow, as an over-approximation of this graph, the edges of our static
anlaysis dependency graph also covers these two kind of flows. We develop a feasible data flow relation
to catch these two flows, in Section 4.3.2.

The weight of every vertice in the execution-based graph is built on all possible execution traces.
In order to over-approximate the weight statically but still tightly, we present a symbolic reachability
bound analysis for estimation of the weight of each vertice(label) in Section 4.3.3, in spirit of some
reachablility bound techiniques.

The edges and weight estimation are both performed on basis of an abstract control flow graph
of the program, we first show how to generate this abstract execution control flow graph before the
introduction of the edge and weight estimation.

4.3.1 Abstract Execution Control Flow graph

We discuss the vertices and edge of the abstract control flow graph for a program c, absG(c).
Every vertex corresponds to the unique label. Specifically, the vertices of this graph is the set of c’s

labels with an exit label lex ,
absV(c) = l abel s(c)∪ {lex }

The edge in the abstract control flow graph comes from the abstract execution trace of the program.
The abstract execution trace, an abstract representation of the execution, consists of a list of abstract
transitions. Then, every abstract transition in the abstraction execution trace corresponds to an edge in
the abstract control flow graph. In another word, the edge (l1,dc, l2) in the abstract control flow graph,
represents an abstract transition from l1 to l2, with a set of difference constraints dc. Also notice, the
difference constraints generated during the abstract transition appears in the edge as annotation.

15

Overall, the vertices can be easily collected and the key point of construction of the abstract
execution control flow graph for a program is the abstract execution trace, which relies on the abstraction
of expression and abstract transition (we also call it abstract event), we will discuss in the following
section. To make it easy to understand, abstract control flow graph is a control flow graph, with
difference constraints on every edge.

Expression Abstraction The expression assigned to the variable on the left hand of the assignment
command is abstracted to an abstract value: (adopted from the expression abstraction method in
paper [2]). The abstract value is expressed in the form of Difference constraint, denotated as DC :
VAR∪SMBCST→VAR× (VAR∪SMBCST)×(Z∪{∞}). SMBCST is called the Symbolic Constant
defined as SMBCST,N∪VARin∪ {max(DB)}, which consists of natural numbers N, the program’s
input variables VARin and a constant value Qm for estimating the upper bound of variables which are
assigned by queries.

Give an instance of difference constraint used here, DC (VAR∪SMBCST)∪ {>} represents all
the difference constraints over variable and symbolic constants. It is a set of the inequality of form
x ≤ y + v where x ∈VAR, y ∈VAR∪SMBCST and v ∈Z. This difference constraint is defined in the
same way as [2]. For concise, we use DC> to represent the DC (VAR∪SMBCST)∪ {>} .

We show the expression abstraction absexpr : e →VAR→ DC (VAR∪SMBCST)∪ {>} below.

absexpr(x − v, x) = x ′ ≤ x − v x ∈VARguard∧ v ∈N
absexpr(y + v, x) = x ′ ≤ y + v x ∈VARguard∧ v ∈Z∧ y ∈ (VARguard∪SMBCST)
absexpr(v, x) = x ′ ≤ v +0 x ∈VARguard∧ v ∈ (VARguard∪SMBCST)
absexpr(y + v, x) = x ′ ≤ y + v
VARguard =VARguard∪ {y} x ∈VARguard∧ v ∈Z∧ y ∉ (VARguard∪SMBCST)
absexpr(ψ, x) = x ′ ≤ 0+Qm x ∈VARguard∧ψ is a query expression
absexpr(b, x) = x ′ ≤ 0+1 x ∈VARguard∧b is a boolean expression
absexpr(e, x) = x ′ ≤∞ x ∈VARguard∧e doesn’t have any of the forms as above
absexpr(e, x) => x ∉VARguard

VARguard is the set of variables used in the guard expression of every while command in the
program c. In the case 4, if a variable x, belonging to the set VARguard is updated by a variable y ,
which isn’t in this set, we add y into the set VARguard and repeat above procedure until VARguard and
absexpr(e, x) is stabilized.
Specifically we handle a normalized guard expression (x > 0 for x l ∈ LVc) in while , and the counter
variables only increase, decrease or reset by simple arithmetic expression (mainly multiplication,
division, minus and plus (able to extend to max and min)). This is the same as in paper [2].
For more complex expression assignments, where the counter reset, or calculated from log , multipli-
cation or division, and expressions involving multiple variables, the constraint is approximated as reset
of ∞.
This approximation strategy doesn’t affect our analysis results in our examples. It is easy to extend the
normalized expression into more complex forms as in [2], as well as the counter variable manipulation
with more advanced expressions.

Program Event Abstraction We show the abstract event definition, which is generated when com-
puting its abstract execution trace.

16

Definition 21 (Abstract Event). Abstract Event:
α

ε∈ L×DC>×L is a triple where the first and third
components are labels, second component is a constraint from DC>.

Specifically, in an abstract event, the first label correspond to an initial state, and the second label
and the constraint correspond to an abstract final state. The abstract initial state is a label from L. The
abstract final state is a pair from L×DC>, where first component is a label from L and the second
component is a constraint from DC>.

Given a program c, its abstract initial state, and the set of its abstract final state is computed as
follows,

absinit([x ← e]l) = l
absinit([x ← e]l) = l

absinit(
[
skip

]l) = l
absinit(if [b]l then c1 else c2) = l
absinit(while [b]l do c) = l
absinit(c1;c2) = absinit(c1)

Final State Abstraction: absfinal :C→P(L×DC>), computes the set of Abstract Final State for the
command.

absfinal([x ← e]l) = {(l ,absexpr (e, x))}
absfinal(

[
x ← query(ψ)

]
l) = {(l , x ′ ≤ 0+Qm)}

absfinal(
[
skip

]l) = {(l ,>)}
absfinal(if [b]l then c1 else c2) = absfinal(c1)∪absfinal(c2)
absfinal(while [b]l do c) = {(l ,>)}
absfinal(c1;c2) = absfinal(c2)

Abstract Execution Trace Now, we extract the abstract execution trace abstrace(c) for a program,
which computes the Abstract Execution Trace for program c, as a set of the abstract events

α

ε.

Definition 22 (Abstract Execution Trace). abstrace ∈C→P(L×DC (VAR∪SMBCST)∪ {>})×L)

We now show how to compute the abstract execution trace. For simplicity, we use P(
α

ε) represent
the power set of all abstract events, and we have abstrace(c) ∈P(

α

ε). We first append a skip command
with the exist label lex , i.e.,

[
skip

]lex at the end of the program c, and compute the abstrace(c) =
abstrace′(c ′) for c ′, where c ′ = c;

[
skip

]lex as follows,

abstrace′([x ← e]l) =;
abstrace′(

[
x ← query(ψ)

]l) =;
abstrace′([skip]l) =;
abstrace′(if [b]l then ct else c f) = abstrace′(ct)∪abstrace′(c f)∪ {(l ,>,absinit(ct)), (l ,>,absinit(c f))}

abstrace′(while [b]l do cw) = abstrace′(cw)∪ {(l ,>,absinit(cw))}∪ {(l ′,dc, l)|(l ′,dc) ∈ absfinal(cw)}
abstrace′(c1;c2) = abstrace′(c1)∪abstrace′(c2)∪ {(l ,dc,absinit(c2))|(l ,dc) ∈ absfinal(c1)}

Notice abstrace′([x := e]l), abstrace′([x := query(ψ)]l) and abstrace′([skip]l) are all empty
set. For every event ε with label l in an execution trace τ of program c, there is an abstract event
in program’s abstract execution trace of form (l ,_,_). We also show the soundness of the abstract
execution trace in Appendix.

Lemma 4.1 (Soundness of the Abstract Execution Trace). Given a program c, we have:

∀τ0,τ ∈T,ε= (_, l ,_) ∈E . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃ α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

17

This lemma is proved formally in Lemma E.1 in Appendix E.
For every labeled variable in program c, x l ∈ LVc , there is a unique abstract event in program’s abstract
execution trace

α

ε∈ abstrace(c) of form (l ,_,_).

Lemma 4.2 (Uniqueness of the Abstract Execution Trace). Given a program c, we have:

∀τ0,τ ∈T,ε= (_, l ,_,_) ∈Easn . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃!

α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

This lemma and proof is also formalized in Lemma E.3 in Appendix E.
Then, we build the edge for c’s abstract control flow graph as follos,

absE(c) = {(l1,dc, l2)|(l1,dc, l2) ∈ abstrace(c)}

Abstract Control Flow Graph With the vertices absV(c) and edges absE(c) ready, we construct
the abstract control flow graph, formally defined in Definition 23.

Definition 23 (Abstract Control Flow Graph). Given a program c, with its abstract control flow
abstrace(c) its abstract control flow graph absG(c) = (absV(c),absE(c),absW(c)) is defined as fol-
lows,
absE(c) = {(l1,dc, l2)|(l1,dc, l2) ∈ abstrace(c)},
absV(c) = l abel s(c)∪ {lex }
absW(c),

{
(l , w) ∈ L×E X PR(SMBCST)

}
.

Notice we also define the absW(c) in this graph without giving an actual value. This absW(c) is the
set of weight for every label. The weight is a symbolic expression over the symbolic constant, which
is the estimated upper bound on the number of visiting time for every control location through the
reachability bound analysis as follows.

Example Let us look at the two-round example, its generated abstract control flow graph is shown
as in Figure 4(b). For example, the edge (0, a ≤ 0,1) on the top, tells us the command [a ← 0]0 is
executed with next continuation location 1, where the command

[
j ← k

]1 will be executed next. The
constraint a ≤ 0 is a difference constraint, generated by abstracting from the assignment command
a ← 0, representing that value of a is less than or equals to 0 after location 0 before executing command
at line 1. The difference constraint is an inequality relation between, the left-hand side of the inequality
talks about the variable before the execution and the right-hand side ascribes those after the execution.
Look at the a < a + x on the edge 5 to 2, which describes the execution of the command at line 5,
which is an assignment a = a + x. The a on the left side of a < a + x represents the value of a after
the assignment, while the right-hand side a stores the value before the assignment. Also, we have
while loop, which is a circle 2 → 4 → 5 → 2 in Figure 4(b). Please also look at the edge from 3 to 4,
which talks about the query! The x <Qm describes the execution of a query request (the command at
line 3), the query results stored in x is bounded by Qm . Qm is the maximal value for query requesting
result from the database DB . top means there is no assignment executed, for example, we have the
difference constraint > on the edge 2 to 6, means at line 2, there is no assignment (it is a testing guard
j > 0.) The same way for the rest edges’ constructions.

18

[a ← 0]0;
[

j ← k
]1;

while
[

j > 0
]2

do([
x ← query(χ[j])

]3;[
j ← j −1

]4;

[a ← x +a]5
)
;[

l ← query(χ[k]∗a)
]6

(a)

0 1

2

3

45

6

ex

a ≤ 0

j ≤ k

>
x ≤Qmj ≤ j −1

a ≤ a +x

l ≤Qm

>

(b)

0 : 1 1 : 1

2 : k

3 : k

4 : k5 : k

6 : 1

ex : 1

a ≤ 0

j ≤ k

>
x ≤Qmj ≤ j −1

a ≤ a +x

l ≤Qm

>

(c)
Figure 4: (a) The same towRounds(k) program as Figure ?? (b) The abstract control flow graph for
towRounds(k) (c) The abstract control flow graph with the reachability bound for towRounds(k).

4.3.2 Edge Estimation with Interprocedure Call

We show how to estimate the directed edges in the static analysis dependency graph. We develop a
variant of data flow analysis, called Feasible Data-Flow Generation, which considers both the control
flow and data flow and is a sound approximation of the edges in the execution based dependency graph.

Also, worth to mention, we use the result of reaching definition on the abstract control flow graph
in feasible data-flow generation to have a more precise approximation. Let us see a simple example, a
program [x = 0]1; [x = 2]2; [y = x +1]3. The standard data flow analysis tells us that both the labeled
variable x1 and x2 may flow to y3, which will result in an unnecessary edge (x1, y3). The result of
reaching definition can help us eliminate this kind of edge by telling us, at line 3, only variable x2 is
reachable.

In the first step, it performs the standard reaching definition analysis given a program c, on every
label in absV(c). This step generates set of all the reachable variables at location of label l in the
program c. The RD(l ,c) represent the analysis result, which is the set of reachable labeled variables
in program c at the location of label l . For every labelled variable x l in this set, the value assigned
to that variable in the assignment command associated to that label is reachable at the entry point
of executing the command of label l . The block, is either the command of the form of assignment,
skip, or a test of the form of [b]l , denoted by blocks(c) the set of all the blocks in program c, where
blocks :C→P(C∪ [b]l). Then it generates the set of feasible data-flow between labeled variables with
detail in Definition 24, based on RD(l ,c) for every label in a program c and its blocks blocks.
The details are as follows.

Reaching definition analysis A block is either the command of the form of assignment, skip, or test
of the form of [b]l .
The operator blk :C→ bl ocks gives all the blocks in program c.
Set ? to be undefined:
The operator kill: bl ocks → P(VAR×L∪ {?}) produces the set of labelled variables of assignment
destroyed by the block.
The operator gen: bl ocks →P(VAR×L∪ {?}) generates the set of labelled variables generated by the
block.
The operator i n(l), out (l): L→LV∪ {?} for every block in program c is defined as follows,

i n(l) = {x?|x l ∈ LVc ∧ l = absinit(c)}∪ {out (l ′)||(l ′,_, l) ∈ absE(c)∧ l 6= absinit(c)}
out (l) = g en(B l)∪ {i n(l) \ ki l l (B l)}

computing i n(l) and out (l) for every B l ∈ bl ocks(c), and repeating these two steps until the i n(l) and
out (l) are stabilized for every B l ∈ blocks(c) We use RD(l ,c) to represent denote the stabilized result

19

of i n(l) at label l in program c.
The stabilized i n(l) and out (l) for program c, as well as RD(l ,c), is computed by the standard worklist
algorithm with detail as below.

1. initial in[l]=out[l]=;
2. initial in[entry label] = ;
3. initialize a work queue, contains all the blocks in C

4. while |W| != 0
pop l in W
old = out[l]
in(l) = out(l’) where (l ′,_, l) ∈ absE(c)
out(l) = gen(bl) ∪ (in(l) - kill(bl)) where bl in blk(c)
if (old != out(l)) W= W ∪ {l’| (l,l’) in (l ′,_, l) ∈ absE(c)}
end while

Feasible Data-Flow Generation by using the results of Reaching definition analysis results, specif-
ically RD(l ,c) for every label in a program c, we refine the vertices and edges in the absG graph by
generating the set of feasible data-flow between labeled variables as follows,

Definition 24 (Feasible Data-Flow). Given a program c and two labeled variables xi , y j in this
program, flowsTo(xi , y j ,c) is

flowsTo(xi , y j , [x ← e]l) , (xi , y j) ∈ {(y i , xl)|y ∈FV(e)∧ y i ∈ RD(l , [x ← e]l)}

flowsTo(xi , y j ,
[
x ← query(ψ)

]l) , (xi , y j) ∈ {(y i , xl)|y ∈FV(ψ)∧ y i ∈ RD(l ,
[
x ← query(ψ)

]l)}
flowsTo(xi , y j , [skip]l) =;
flowsTo(xi , y j , if ([b]l ,c1,c2)) , flowsTo(xi , y j ,c1)∨flowsTo(xi , y j ,c2)

∨(xi , y j) ∈ {(xi , y j)|x ∈FV(b)∧xi ∈ RD(l , if ([b]l ,c1,c2))∧ y j ∈ LV(c1)
∨(xi , y j) ∈ {(xi , y j)|x ∈FV(b)∧xi ∈ RD(l , if ([b]l ,c1,c2))∧ y j ∈ LV(c2)

flowsTo(xi , y j , while [b]l do cw) , flowsTo(xi , y j ,cw)∨
(xi , y j) ∈ {(xi , y j)|x ∈FV(b)∧xi ∈ RD(l , while [b]l do cw)∧ y j ∈ LV(cw)

flowsTo(xi , y j ,c1;c2) , flowsTo(xi , y j ,c1)∨flowsTo(xi , y j ,c2)

[fun]l : x(r, x1, . . . , xn) := c ;[
x ← call (f ,e1, . . . ,en)

]l , flowsTo(xi , y j ,
[
xi ← ei

](l ,i))∨flowsTo(xi , y j ,
[
c+n]l)∨flowsTo(xi , y j ,

[
x ← r lr +n

]l
)

∧ f (r lr , x1, . . . , xn) := c ∈ RD(l ,c)

We prove that this Feasible Data-Flow relation is a sound approximation of the Variable May-
Dependency relation over labeled variables for every program, in Appendix D.

Edges Estimation Then we define the estimated directed edges between vertices (xi
1, w1) and (x j

2 , w2)

where xi
1, x j

2 ∈ LV(c), as a set of triples Eprog(c) ∈P(LV×Ain×LV) indicating a directed edge from
the first vertex to the second one in each pair as follows,

Eprog
0(c),

{
(xi

1, w, x j
2) ∈LV×Ain×LV

∣∣∣∣∣ xi
1, x j

2 ∈ LV(c)∧∃n ∈N, zr1
1 , · · · , zrn

n ∈ LVc . n ≥ 0∧
flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c)

}

The weight for every edge will be computed as next step in Section 4.3.3. We prove that this estimated
directed edge set Eprog(c) is a sound approximation of the edge set in c’s Execution-Based Dependency
Graph in Appendix B.

20

Example Still looking at the Figure 3(c) in main paper, and taking the edge (l 6, a5) for example. By
flowsTo(l 6, a5,c), we can see a is used directly in the query expression χ[k]∗a, in the assignment
command

[
l ← query(χ[k]∗a)

]l , i.e., a ∈ FV (χ[k]∗a). Also, from the Reaching definition analysis,
we know a5 ∈ RD(6, t wo − r ound). Then we have flowsTo(l 6, a5,c) and construct the edge (l 6, a5).
And same way for constructing the rest edges. Also, the edge (x3, j 5) in the same graph represents the
control flow, caught by our flowsTo relation.

4.3.3 Weight Estimation via Path Sensitive Reachability Bound Analysis

In order to estimate weight for every vertex in the static analysis dependency graph(Vprog(c)), we want
to find out the upper bound on the number of times the labeled command (uniquely associated with a
vertex in Vprog(c)) may be executed when running the program. This information can be obtained by
computing the reachability bound for every vertex in the abstract control flow graph (absW(c)), because
the vertices in the two graph share the same unique label, the line number. We can easily show that
the reachability bound on one vertex of the abstract control flow graph is also the upper bound for the
corresponding vertex in the static analysis dependency graph, both vertices share the same unique line
number.

We perform the symbolic reachability bound analysis on the abstract control flow graph, through
the edges in absG(c), which correspond to c’s abstract transition between labels. We infer the invariant
for every variable, and compute the transition closure for every abstract transition. By solving the
closure with the invariants of variables involved in this closure for every transition, we compute the
symbolic reachability bound of every commands corresponding to this transition. Specifically, this
analysis can be performed in four steps: Variable Modification Tracking, Local Bounds Computation,
Invariant Inference and Closure Generation, and Reachability Bound Computation, with details as
follows.

Variable Modification Tracking Identify the abstract events where each variable is increased,
decreased and reset:
inc :VAR→P(

α

ε) the set of the abstract events where the variable increase.
inc(x) = {(

α

ε,c)| αε= (l , l ′, x ′ ≤ x + v)}
re :VAR→P(

α

ε) The set of the abstract events where the variable is reset.
dec :VAR→P(

α

ε) The set of abstract events where the variable decrease.
Incr (v),

∑
(
α
ε,c)∈inc(v)

{Tclosure(
α

ε)× v}

Local Bounds Given a program c with its abstract control flow graph absG(c) = (absV,absE)
Local Bounds Computation: locb :

α

ε→VAR∪SMBCST.

locb(
α

ε), 1
α

ε∉ SCC (absG(c))

locb(
α

ε), (x, v)
α

ε∈ SCC (absG(c))∧ α

ε∈ dec(x)∧ α

ε= (_,_, x ′ ≤ x − v)

locb(
α

ε), (x,max(dec(x)))
α

ε∈ SCC (absG(c))∧ α

ε∉⋃
x∈VARdec(x)∧ α

ε∉ SCC (absG(c) \dec(x))

The first case is straightforward. Since variable’s visiting time outside of any while loop is at most 1,
we do not need to analyze the visiting times of every node in the graph from phase 1. The second and
third step is guaranteed by the Discussion on Soundness in Section 4 of [2]. Then soundness proof is in
Lemma E.2 in Appendix E.

21

Invariant Inference and Closure Generation Then, computing the bound invariants for variables
and the transition closures for abstract events:
Vinvar :VAR∪SMBCST→ E X PR(SMBCST)
Tclosure :

α

ε→ E X PR(SMBCST)
E X PR(SMBCST) is symbolic expression over SMBCST, which is a subset of arithmetic expressions
over N with input variables and . We use Ain denotes the arithmetic expression over the symbolic
variables, (i.e., N with input variables and). Then, the symbolic invariant for each variable as well as
the symbolic transition closure for each transition is calculated as follows:

Vinvar(x) , c c ∈ SMBCST

Vinvar(x) , Incr (v)+max({Vinvar(a)+ c|(t , a,c) ∈ re(x)}) c ∉ SMBCST

Definition 25.

Tclosure(
α

ε) , x/v

locb(
α

ε) = (x, v) ∈ SMBCST×N
Tclosure(

α

ε) , (Incr (x)+ ∑
(
α
ε
′
,y,v ′)∈re(x)

Tclosure(
α

ε
′
)×max(Vinvar(y)+ v ′,0))/v

locb(
α

ε) = (x, v)∧x ∉ SMBCST

Improved Variable Modification Tracking Instead of just identifying the abstract events where
each variable is reset, this improvement identifies the chain of the events where a given variable is reset
by the variables of the abstract events through the chain.
rechain :VAR→P(P(

α

ε)) The set of the chain of abstract events where the variable is reset through
the chain.

Improved Invariant Inference and Closure Generation Then, computing the bound invariants for
variables and the transition closures for abstract events:
Vinvar :VAR∪SMBCST→Ain

Tclosure :
α

ε→Ain

Then, the symbolic invariant for each variable as well as the symbolic transition closure for each
transition is calculated as follows:

Vinvar(x) , c c ∈ SMBCST

Vinvar(x) , Incr (v)+max({Vinvar(a)+ c|(t , a,c) ∈ re(x)}) c ∉ SMBCST

Definition 26.

Tclosure(
α

ε) , x/v

locb(
α

ε) = (x, v) ∈ SMBCST×N
Tclosure(

α

ε) ,
(∑

y∈{y | ch∈rechain(x),(l1,x,y,v,l2)∈ch}
Incr (x)

+ ∑
ch∈rechain(x)

(
min
α
ε
′∈ch

(Tclosure(
α

ε
′
))×max(Vinvar(y)+ ∑

(l1,x,y,v,l2)∈ch
v,0)

))
/v

locb(
α

ε) = (x, v)∧x ∉ SMBCST

Wprog(x l), Tclosure(
α

ε)

22

Reachability Bound Computation Through the transition closure computed above, The weight of
every label in the program c’s abstract control flow graph, absG(c) = (absV,absE,absW) is computed
as the maximum over all the abstract events

α

ε∈ absE heading out from this vertex, formally as follows.
absW,

{
(l , w) ∈N×Ain|w = max

{
Tclosure(

α

ε) | α

ε∈ abstrace(c)∧ α

ε= (l ,_,_)
}}

.

Example We perform the symbolic reachability bound analysis on the abstract control flow graph as
follows. We would like to generate the closure of every edge, which is an equality relation between
variables. Solving this closure gives us the reachability bound for this edge. With all the bound for all the
edges in the abstract control flow graph, we can calculate the weight for every vertex in this graph. For
example, we show the closure generated for the edge (4, j < j −1,5), Tclosure(4,5) = Vinvar(j). The
invariant for variable j , Vinvar(j) used here is Vinvar(j) = k ∗Tclosure(1,2), which is generated
by all the difference constraints involving j in the graph. Notice the k in Vinvar(j) comes from
considering both difference constraint j <= k from edge (1,2) and j <= j − 1 from (4,5), which
intuitively reflects the while loop whose counter is set to k at the beginning and decreases by 1 at each
iteration. With all the closures for all the edges of the abstract control flow graph, we can solve them to
obtains the reachability bound of every edge. We decide the weight for every vertex in the abstract
control flow graph by using the bound of the edges which head out from this vertex, by taking the max
of the bound from these involving edges. For instance, By the constraint on the edge (4, j ≤ j −1,5), we
get bound k for this edge. Then, we assign vertex 4 by reachability bound k, as in Figure 4(c). Another
interesting vertex is 2, which has more than one edge heading out from it, (2,>,3) and (2,>,6). For the
weight for vertex 2, we choose the max between the bound k from (2,>,3) and 1 from (2,>,6). The
same way for the rest weights’ computation. We use absW(c) for the set of weights we just computed
for each label in the abstract control flow graph of c. The same way for the rest weights’ computation.

Vertex Weight Computation Then we compute the weight for each vertex in Vprog(c), as a set of
pairs mapping each vertex x l ∈ LV(c) to a symbolic expression over SMBCST. Wprog(c) ∈P(LV×Ain)
is formally computed as follows,

Vprog(c),
{

(x l , w) | x l ∈ Vprog0(c)∧ (l , w) ∈ absW(c)
}

.

We prove that this symbolic expression for x l ∈ Vprog(c) is a sound upper bound of the weight for the
same vertex x l in Program’s execution-based dependency graph in Appendix E. The maximum visiting
times of x l over all execution traces of c in Appendix E.

Theorem 4.1 (Soundness of the Vertex Weight Estimation). Given a program c with its program-based
dependency graph Gprog = (Vprog,Eprog), Gtrace = (Vtrace,Etrace), we have:

∀(x l , wt) ∈ Vtrace, (x l , wp) ∈ Vprog,τ0 ∈T0(c),τ′ ∈T, v ∈N .
〈c,τ0〉→∗ 〈skip,τ0++τ′〉∧〈w p ,τ0〉 ⇓e v =⇒ wt (τ) ≤ v

Example Now let’s go back to the Program-Based Dependency Graph which we aim to build for
approximating the Execution-Based Dependency graph for two-round example, as in Figure ??(c).
Every vertex from Vprog(c) in this graph corresponds to a labeled variable, for example a5, and this
label 5 is also a vertex 5 in the abstract control flow graph in Figure 4(b). Then, it is straight forward,
that the reachability bound for the label 5, is also the maximum visiting times bound of the labeled
variable a5. So, we estimate the visiting time for labeled variable a5 in Program-Based Dependency
Graph in Figrue 4(c) as k as well. The same way for the rest weights’ computation.

23

Edges Weight Computation Then we compute the weight for each edge in Eprog(c) computed
above,

Eprog(c),
{

(xi , w, y j) | (xi , w, y j) ∈ Eprog0(c)∧w = max
{
Tclosure(

α

ε) | α

ε∈ abstrace(c)∧ α

ε= (i ,_, j)
}}

.

We prove that this symbolic expression w for edge (xi , w, y j) ∈ Eprog(c) is a sound upper bound of the
weight for the same edge (xi , w ′, y j) in Program’s execution-based dependency graph in Appendix F.

Theorem 4.2 (Soundness of the Edge Weight Estimation). Given a program c with its program-based
dependency graph Gprog = (Vprog,Eprog), Gtrace = (Vtrace,Etrace), we have:

∀(x l , wt) ∈ Wtrace, (x l , wp) ∈ Wprog,τ ∈T . 〈c,τ〉→∗ 〈skip,τ0++τ′〉∧〈wp ,τ〉 ⇓e v =⇒≤ wt (τ) ≤ v

Example Now let’s go back to the Program-Based Dependency Graph which we aim to build for
approximating the Execution-Based Dependency graph for two-round example, as in Figure ??(c).

4.4 Program-Based Data Dependency Graph Generation

Finally we build the estimated data dependency graph based on the above program static analysis as
follows:

Gprog(c) = (Vprog(c),Eprog(c))

with Vprog(c) and Eprog(c) as computed in each steps above. This program-based graph program-based
graph has a similar topology structure as the Execution-Based Dependency Graph. It has the same
vertices but approximated edges and weights. It is formally defined in Definition 27.

Definition 27 (Program-Based Dependency Graph). Given a program c, with its abstract weighted
control flow graph absG(c) = (absV,absE,absW) and feasible data flow relation flowsTo(xi , y j ,c) for
every xi , y j ∈ LVc , its Program-Based Weighted Data Dependency Graph Gprog(c) = (Vprog,Eprog), is
generated as follows,

Vprog(c) ,
{

(xl , w) ∈LV×Ai n | xl ∈ LVc ∧ (l , w) ∈ absW(c)
}

Eprog(c) ,
{

(xi , w, y j) ∈LV×Ain×LV |
xi , y j ∈ LV(c)∧flowsTo(xi , y j ,c)∧∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧·· ·∧flowsTo(zrn

n , y j ,c)

∧w = max
{
Tclosure(

α
ε) | αε∈ abstrace(c)∧ α

ε= (i ,_, j)
}}

.

4.5 Adaptivity Upper Bound Computation

This phase computes the adaptivity upper bound for a program c.
With c’s program-based data dependency graph Gprog(c) approximated above, its adaptivity upper
bound is estimated as the maximum query length over all finite walks in WK(Gprog(c)) formally in
Definition 30, and computed in Algorithm 1.

Different from the finite walk on a program c’s execution based graph, the finite walk in Gprog(c)
doesn’t rely on initial trace. The occurrence times of every vi in k’s vertex sequence is bound by
an arithmetic expression wi where (vi , wi) ∈ Vprog(c), is vi ’s estimated weight. Formally defined as
follows.

Definition 28 (Finite Walk on Program-Based Dependency Graph (k)). .
Given a program c’s program-based dependency graph Gprog(c) = (Vprog(c),Eprog(c)) a finite walk k
in Gtrace(c) is a sequence of edges (e1 . . .en−1) for which there is a sequence of vertices (v1, . . . , vn)
such that:

24

• ei = (vi , wi , vi+1) ∈ Eprog(c) for every 1 ≤ i < n, and occurrence times of ei smaller than wi .

• every vertex (vi , wi) ∈ Vprog(c), vi appears in (v1, . . . , vn) at most wi times.

The length of k is the number of vertices in its vertex sequence, i.e., len(k) = a.

We abuse the notation WK(Gprog(c)) represents the walks over the program-based dependency
graph for c. Different from the walks on a program c’s execution based graph, k ∈WK(Gtrace(c)),
k ∈WK(Gprog(c)) doesn’t rely on initial trace. The occurrence times of every vi in k’s vertex sequence
is bound by an arithmetic expression wi where (vi , wi) ∈ Vprog(c), is vi ’s estimated weight. The length
of a finite walk k ∈WK(Gprog(c)) is an arithmetic expression as well, i.e., len(k) ∈Ai n

Then the query length of a finite walk in Gprog(c) is an arithmetic expression as well as follows,

Definition 29 (Query Length of the Finite Walk on Program-Based Dependency Graph (lenq)). Given
a program c’s execution-based dependency graph Gprog(c) = (Vprog(c),Eprog(c),Wprog(c),Qprog(c)), and
a finite walk k ∈WK(Gprog(c)), The query length of k, lenq(k) ∈Ai n is the number of vertices which
correspond to query variables in the vertices sequence of the this walk k (v1, . . . , vn) as follows,

lenq(k) = |(v | v ∈ (v1, . . . , vn)∧ v ∈QV(c)
)|.

Definition 30 (Program-Based Adaptivity). .
Given a program c and its program-based graph Gprog(c) the program-based adaptivity for c is defined
as

Aprog(c),max
{
lenq(k) | k ∈WK(Gprog(c))

}
.

Based on our soundness of the program-based adaptivity, our program-based adaptivity is a sound
upper bound of its adaptivity in Definition 20.

Theorem 4.3 (Soundness of AdaptFun). For every program c, its program-based adaptivity is a sound
upper bound of its adaptivity.

Aprog(c) ≥ A(c)

For Aprog(c) ≥ A(c) comparing between function and arithmetic expression, we are specifically
comparing, ∀τ ∈T . 〈A(c),τ〉 ⇓e n =⇒ n ≥ A(c)(τ). To estimate a sound and precise upper bound on
adaptivity, we develop an adaptivity estimation algorithm called AdaptSearch (in Apdix Algorithm I),
which uses both the deep first search and breath first search strategy to find the walk. We also show that
the estimated adaptivity from our AdaptSearch is sound with respect to the program-based adaptivity.

Theorem 4.4 (Soundness of AdaptSearch). For every program c.

AdaptSearch(Gprog(c)) ≥ Aprog(c).

The full details of all the soundness can be found in the appendix.
As indicated by our definition of prograpm-based adaptivity, the key point is to find the walks in

the program-based dependency graph. We develop some walk-finding algorithms, Algorithm 1 and
Algorithm 2, which use both the deep first search and breath first search strategy.

By Definition 18, this finite walk isn’t easy to find. We first discuss two challenges when we try to
find the walks in the dependency graph, and show that how we solve them using our algorithms.

Non-Termination Challenge: One naive walk finding method is to simply traverse on this graph
by decreasing the weight of every node by one after every visiting. However, this simple traversing
strategy leads to non-termination dilemma for most programs we are interested in. Specifically, this

25

whileSim(k),[
j ← k

]0;[
x ← query(χ[0])

]1;

while
[

j > 0
]2

do([
x ← query(χ[x])

]3;[
j ← j −1

]4
)

(a)

x1 : 1
1

x3 : k
1

j 2 : 1
0

j 4 : k
0

(b)
Figure 5: (a) Simple While Loop Example, (b) The Program-Based Dependency Graph generated from
AdaptFun.

challenge comes from the weight of each vertex estimated in program’s Program-Based Dependency
Graph, which is not only a number but also can be a symbolic expression.

It is difficult to tell when to terminate the recursion when the domain of this symbolic expression
isn’t finite, some the walk may also be infinite. While, in most of our cases, the programs’ Program-
Based Dependency Graphs are having symbolic weights with infinite domains on vertices. Look at
the simple example in Figure 5, where k is the input variable from domain N. If we traverse on the
program-based dependency graph, and decrease the weight of x3 (the weight k is symbolic) by one
after every visit, we will never terminate because we only know k ∈N.

To solve this non-termination challenge, we switch to another walk finding approach: we first find
a longest path in the program-based dependency graph and then approximate the walk with the path.
Through a simple deep first search algorithm, we find the longest weighted path as the dotted arrow in
Figure 5, x3 : k

1 → x1 : 1
1. Then, by summing up the weights on this path where the vertices has query

annotation 1, deep first search algorithm gives the adaptivity bound 1+k. This is a the tight bound for
this program’s adaptivity.

Approximation Challenge: When we adopt a deep first strategy to search for the longest weighted
path, and then use the path to approximate the adaptivity. We find that this gives us over-approximation
to a large extend. This over-approximation could result in a ∞ adaptivity upper bound on the program
with actual adaptivity 2. Look at the two-round example in overview, it is easy to find that the longest
weighted path is x3 : k

1 → a5 : k
0 → l 6 : 1

0 with weighted query length 1+ k. If we use this path to
approximate a finite walk, and weight of each vertex as its visiting time, then it isn’t a qualified walk.
In the approximated walk, we have the vertices as x3 → ··· → x3 → a5 → ··· → a5 → l 6. Because l 6

can only be visited as most once by its weight, resulting in the restriction on the maximum visiting
time of x3, such that x3 is only able to be visited at most once as well. However, x3 is visited k times
in this approximated walk. In order to have x3 be visited k time, we need to go back to x3 on this
walk from either a5 or l 6 for k time. This is impossible since there is no edge going back to x3 in
Gprog(t woRound). Obviously, its weighted query length, 1+k, over approximates the adaptivity of
this example to a large extend, which supposed to be 2.

These challenges motivate us to design a walk search algorithm through a combination of deep
first search and breath first search strategy. This walk search algorithm consists of two components:
the path searching algorithm, AdaptSearch (in Algorithm 1) which search for a ’suitable’ path relying
on the strong connected components of the program based dependency graph, and AdaptSearchscc(G)
(in Algorithm 2) which approximates the path. The AdaptSearch as shown in Appendix Algorithm I,
takes our program-based dependency graph as input, and outputs the estimated adaptivity by two steps.
1. Process the input graph to a simplified graph 2. Perform the standard breath first search strategy to
find the longest weighted path on this simplified graph and return the length as adaptivity. The step 2 is

26

not interesting, we now discuss step 1. The input dependency graph may contain circle due to the while
loop, we simplify (shrank) the input graph by replacing every strong connected components(circle)
of the graph with, the vertex whose weight is the adaptivity of the SCC (a subgraph of the input one)
calculated by the AdaptSearchscc. The SCC is found by using the Kosaraju’s algorithm. The details of
this algorithm is explained as follows.

Algorithm 1 Adaptivity Computation Algorithm (AdaptSearch)

Require: G = (V,E,W,Q) #{The program based dependency graph}
1: AdaptSearch(G):
2: init

q: empty queue.
adapt : the adaptivity of this graph initialize with 0.

3: Find all Strong Connected Components (SCC) in G: SCC1, · · · ,SCCn,0 ≤ n ≤ |V|,
4: for every SCC: SCCi, compute its Adaptivity SCCi:
5: adaptscc[SCCi] =AdaptSearchscc(SCCi);
6: for every SCCi:
7: q.append(SCCi);
8: adapttmp = 0;
9: while q isn’t empty:

10: s= q.pop(); #{take the top SCC from head of queue}
11: adapttmp0 = adapttmp; #{record the adaptivity of last level}
12: SCCmax; #{record the SCC with longest walk in this level}
13: for every different SCC, s′ connected by s by a directed edge from s:
14: if (adapttmp < adapttmp0 +adaptscc[s′]):
15: adapttmp = adapttmp0 +adaptscc[s′];
16: SCCmax = s′; #{update the SCC with longest walk in this level}
17: q.append(SCCmax);
18: adapt= max(adapt,adapttmp);
19: return adapt.

The Adaptivity Computation Algorithm (AdaptSearch) This algorithm first finds all the strong
connected components (SCC) of Gprog(c) using the Kosaraju’s algorithm in line:3. Every SCC1, · · · ,SCCn
where 0 ≤ n ≤ |V| is a sub-graph of Gprog(c), where SCCi = (Vi ,Ei ,Wi ,Qi). Then, it computes the
adaptivity on every SCC in line:4-5 by Algorithm 2. We guarantee the soundness of the adaptivity on
SCC by Lemma G.1 with proof in Appendix G. The Gprog(c) is then shrunk into an acyclic directed
graph where SCC1, · · · ,SCCn are vertices with their adaptivities as weights. For every (vi , v j) ∈ E such
that v1 ∈ Vi , v j ∈ V j and i 6= j , there is a edge (si , s j) in this shrank graph.
Then, we use the standard breath first search strategy to find the longest weighted path on this shrank
graph and return the length as adaptivity.
We guarantee that the length of this longest weighted path is a sound computation of the adaptivity
for program c, and this longest weighted path a sound computation of the finite walk having the
longest query length on c’s program based dependency graph, in Theorem G.1 in Appendix. We also
guarantee the conditional completeness of the adaptivity computation for graphs under the case that c’s
Program-Based Dependency Graph Gprog(c) is acyclic directed in Theorem H.1 in Appendix H.

27

Algorithm 2 Adaptivity Computation Algorithm on SCC Graph

Require: G = (V,E,W,Q) #{An Strong Connected program based dependency Graph}
1: AdaptSearchscc(G):
2: init

rscc: E X PR(SMBCST), initialized 0, the Adaptivity of this SCC
3: init

visited : {0,1} List,
#{length |V|, initialize with 0 for every vertex, recording whether a vertex is visted.}
r : E X PR(SMBCST) List,
#{length |V|, initialize with Q(v) for every vertex, recording the adaptivity reaching each

vertex.}
flowcapacity: E X PR(SMBCST) List,
#{length |V|, initialize with ∞ for every vertex, recording the minimum weight when the walk

reaching that vertex, inside a cycle}
querynum: INT List,
#{length |V|, initialize with Q(v) for every vertex, recording the query numbers when the path

reaching that vertex, inside a cycle}
4: if |V| = 1 and |E| = 0:
5: return Q(v)
6: def dfs(G,c,visited):
7: for every vertex v connected by a directed edge from c:
8: if visited[v] = false:
9: flowcapacity[v] = min(W(v),flowcapacity[c]);

10: querynum[v] = querynum[c]+Q(v);
11: r[v] = max(r[v],flowcapacity[v]×querynum[v]);
12: visited[v] = 1;
13: dfs(G,v,visited);
14: else: #{There is a cycle finished}
15: r[v] = max(r[v],r[c]+min(W(v),flowcapacity[c])∗ (querynum[c]+Q(v)));

#{update the length of the longest walk reaching this vertex on this cycle}
16: return r[c]
17: for every vertex v in V:
18: initialize the visited,r,flowcapacity,querynum;
19: rscc = max(rscc,dfs(G,v,visited)) ;
20: return rscc

28

Adaptivity Computation Algorithm on SCC Graph (AdaptSearchscc(G)) This algorithm takes a
subgraph of the program-based dependency graph as input, to be precise, the input graph is SCC, and
the output is the adaptivity of this SCC. For an SCC containing only one vertex without any edge, it
returns the query annotation of this vertex as adaptivity. For SCC containing at least one edge, There
are three steps in this algorithm: 1. find out all the paths in the input SCC 2. Calculate the adaptivity of
every path using our designed adaptivity counting method. 3. Return the maximal adaptivity among all
the paths. The step 3 is trivial. Because our input graph is SCC, when we start traversing from a vertex,
we will finally go back to this vertex. The paths we find in step 1 are all those with the same starting
and ending vertex. The most interesting part is step 2. We discuss as follows.

This algorithm first check if an SCC contains only one vertex without any edge, as in line:4-5
in Algorithm 2. Again, for the SCC containing only one vertex without any edge, as in line:4-5 in
Algorithm 2. The adaptivity on this SCC is at most one if it is a query vertex, and zero otherwise.
AdaptSearchscc(G) return query annotation directly as in line:4-5.
For the SCC containing at least one edge, we compute the adaptivity for each path on the fly of
searching for the paths in the recursion algorithm dfs designed based on a deep first search strategy
from line: 6-16 in AdaptSearchscc(G) in Algorithm 2.
As the Approximation Challenge discussed above, we want to guarantee the visiting time of each
vertex smaller than its weight and compute the adaptivity accurately, in the meantime guarantee the
algorithm termination. It uses a capacity limitation and special parameters to achieve it, specifically as
follows. Additionally, we are computing the query length rather than sum of the weights. We design a
deep first search strategy from line: 6-16 in Algorithm 2, with a capacity limitation and use special
parameter to compute the adaptivity.
In order to guarantee the termination, AdaptSearchscc(G) terminates the recursion if monitored a cycle,
as in line:8 and line:14, through a boolean list visited. This guaranteed the termination and solved
the Challenge II. discussed above.
In order to solve the Approximation Challenge, specifically guarantee the visiting times of each
vertex by its weight and compute the adaptivity accurately, we use a special parameter flowcapacity
to track the minimum weight along the path during the searching procedure, and a parameter querynum
to track the total number of vertices with query annotation 1 along the path in order to compute the
query length.

The detail steps of this dfs strategy from line: 3-16 in Algorithm 2, particularly from line: 7-15 on
how to use these two special parameters to resolve Approximation Challenge is described as follows.
flowcapacity is a list of symbolic expressions for every vertex, recording the minimum weight when
the path reaches that vertex, which is initialized by ∞.

querynum is a list of integer with length |V|, which is initialized with Q(v) for every vertex. For
every vertex, it records the total query numbers when the path reaching this vertex.

We maintain the minimum weight for the flowcapacity, number of query vertices querynum
and update the adaptivity for this path r alone the path and update the adaptivity reaching this vertex,
when traversing on this graph, as in Algorithm 2 from line: 8-13. At line: 15 where this vertex is
visited, i.e., this path going back to its starting node, we only update the adaptivity r reaching this
vertex.
The updating operations during the traversing (in line: 11) and at the end of the traverse (in line:
15), specifically the flowcapacity[v]×querynum[v] computes the query length for this path. it
guarantees the visiting times of each vertex on the path reaching a vertex v is no more than the
maximum visiting it can be on a qualified walk, through flowcapacity[v], and in the same time
compute the query length instead of weighted length accurately through querynum[v]. In this way, we
resolve the Approximation Challenge and in the same time without losing the soundness,

29

We first initialize some parameters:
visited is initialized as a list of 0 for every vertex on this SCC, in order to guarantee the termination;
r is initialized as a list of integer with length |V|, initialize with Q(v) for every vertex. The adaptivity
reaching each vertex.
flowcapacity a list of symbolic expressions for every vertex, recording the minimum weight when
the walk reaching that vertex, which is initialized by ∞.
querynum is a list of integer with length |V|, which is initialized with Q(v) for every vertex. For every
vertex, in order to record the total query numbers when the walk reaches a vertex.
Then from line: 5-11, we record the minimum weight and number of query vertices alone the path and
update the adaptivity reaching this vertex, and then recursively dfs on all vertices heading out from this
vertex.
At line: 12 where this vertex is visited, we only update the adaptivity reaching this vertex and neither
recursion nor update the flowcapacity and querynum.
The updating operation in these two branches, specifically flowcapacity[v]×querynum[v] in line:
11 and line: 15 guarantees 1.the visiting times of each vertex on the walk reaching v is no more
than the maximum visiting it can be on this walk, through flowcapacity[v]. In this way, we
resolve the Approximation Challenge and in the same time without losing the soundness by using
flowcapacity[v]×querynum[v] to compute the query length.
Notice here, another special operation we have in the second branch is Non-updating of querynum
and flowcapacity. This guarantees both the accuracy and the soundness, formally in Lemma G.1 in
Appendix G.

Now, we show an example illustrating how our two updating operations for adaptivity for each
path can guarantee both the accuracy and the soundness. Look at a Nested While Loop example
program in Figure 6. We first search for a path: y6 → y6, and compute the adaptivity for this path as k.
Notice here, another special operation we have in the second branch is Non-updating of querynum and
flowcapacity. This guarantees both the accuracy and the soundness. Specifically, if this vertex is
visited, it indicates that a cycle is monitored and the traversing on this cycle is finished by going back
to this vertex. When we continuously search for walks heading out of this vertex, the minimum weight
on this cycle does not affect the walks going out of this vertex that not pass this cycle. However, if we
keep recording the minimum weight, then we restrict the visiting times of vertices on a walk by using
the minimum weight of vertices not on this walk. Then, it is obviously that this leads to unsoundness. If
we update the flowcapacity[y6] as k after visiting y6 the second time on this walk, and continuously
visit x9, then the flowcapacity[k] is updated as min(k,k2). So the visiting times of x9 is restricted
by k on the walk y6 → y6 → x9. This restriction excludes the finite walk y6 → y6 → x9 → x9 where
y6 and x9 visited by k2 times in the computation. However, the finite walk y6 → y6 → x9 → x9 where
y6 is visited k times and x9 k2 times is a qualified walk, and exactly the longest walk we aim to find.
So, by Non-updating the flowcapacity after visiting y again, we guarantee that the visiting times og
vertices on every searched walk will not be restricted by weights not on this walk, i.e., the soundness.
In the last line of this dfs algorithm, line: 16, it returns the adaptivity heading out from its input vertex.
By applying this deep first search strategy on every vertex on this SCC, we compute the adaptivity of
this SCC by taking the maximum value over every vertex. The soundness is formally guaranteed in
Lemma G.1 in Appendix G.

Theorem 4.5 (Soundness of AdaptSearch). For every program c, given its Program-Based Dependency
Graph Gprog,

AdaptSearch(Gprog) ≥ Aprog(Gprog).

30

nestedWhileMultiVarRecAcross(k),
[i ← k]0;[
x ← query(χ[0])

]1;[
y ← query(χ[1])

]2;
while [i > 0]3 do(
[i ← i −1]4;[
j ← k

]5;[
y ← query(χ(ln(x)+ y))

]6;

while
[

j > 0
]7

do([
j ← j −1

]8;[
x ← query(χ(ln(y))+χ[x])

]9
))

(a)

a0 : 1
0

x1 : 1
0 y6 : k

0

x9 : k
0

i 0 : 1
0

i 4 : k
0

j 0 : 1
0

j 8 : k
0

(b)

Figure 6: (a) Nested While Loop Example, (b) Execution-Based Dependency Graph, (c) The Static
Program-Based Dependency graph.

Algorithm 3 Over-Approximated Adaptivity on SCC

Require: G = (V,E,W,Q) #{An Strong Connected Symbolic Weighted Directed Graph}
1: AdaptSearchscc−naive(G):
2: init

rscc: the Adaptivity of this SCC
3: for every vertex v in V:
4: rscc+= W(v)∗Q(v)
5: return r [c]

31

multipleRounds(k,c),[
j ← k

]0; [I ← []]1;
[ns ← 0]2; [cs ← 0]3;

while
[

j > 0
]4

do([
j ← j −1

]5;
[
a ← query(I)

]6;[
ns ← updnscore(ns, a)

]7;[
cs ← updcscore(cs, a)

]8;[
I ← updI(I ,ns,cs)

]9
)

(a)

I 1 : 1
0

ns2 : 1
0

cs3 : 1
0

a6 : k
1

ns7 : k
0

cs8 : k
0

I 9 : k
0

j 0 : 1
0

j 5 : k
0

(b)
Figure 7: (a) The simplified multiple rounds example (b) The program-based dependency graph from
AdaptFun

5 Examples and Experimental Results

We present four examples, illustrating AdaptFun. Then we show our implementation of AdaptFun
and its experimental results on 18 examples including these four examples.

5.1 Examples

Example 5.1 (Multiple Rounds Algorithm). We look at an advanced adaptive data analysis algorithm
- multiple rounds algorithm, as in Figure 7(a). It takes the user input k which decides the number of
iterations. It starts from an initialized empty tracking list I , goes k rounds and at every round, tracking
list I is updated by a query result of query(χ[I]). After r rounds, the algorithm returns the columns
of the hidden database D not specified in the tracking list I . We use functions updnscore(p, a),
updcscore(p, a),update(I ,ns,cs) to simplify the complex update computations of N scor e, C scor e
and the tracking list I , which will not affect our analysis.

The interesting part here is the query asked in each iteration is not independent any more. The
query in one iteration j now depends on the tracking list I from its previous iteration j −1, which is
updated by the query result in the same iteration j −1. The connection between queries from different
iterations, which means these queries are adaptively chosen according to our discussion in overview.

The program-based dependency graph is presented in Figure 7(b). Its execution-based dependency
graph has the same graph, except different weight so we do not show it again. We can simply replaces k
with a function wk which takes a trace and returns the value of k in this trace. The weight 1 is replaced
as a constant function w1 taking whatever trace and returns 1 for the execution-based dependency
graph. For consistence, we use wk and w1 for all the examples in this section. As the adaptivity
definition in our formal adaptivity model in Definition 20, there is a finite walk along the dashed arrows,
a6 → I 9 → ns7 →···→ ns7 , where every vertex is visited wk (τ0) times for an initial trace τ0 ∈T0(c).
There is one vertex a6 visited wk (τ0) times with query annotation 1, So we have the adaptivity with τ0

for this program as wk (τ0).
Next, we show AdaptFun providing the tight upper bound for this example. If first finds a path

a6 : k
1 → I 9 : k

0 → ns7 : k
0 with three weighted vertices, and then AdaptSearch approximate this path to a

walk, in which a6, I 9,ns7 is visited k times. So the estimated adaptivity is k. We know for any initial
trace τ0 where 〈τ0,k〉 ⇓e v and wk (τ0) = v . So k from AdaptFun is a tight bound.

Example 5.2 (Linear Regression Algorithm with Gradient Decent Optimization). The linear regression
algorithm with gradient decent Optimization works well in our AdaptFun as well. Analysis Result:
Aprog(linearRegressionGD(k,rate)) = k

32

linearRegressionGD(k,rate),
[a ← 0]0; [c ← 0]1;

[
j ← k

]2;

while
[

j > 0
]3

do([
d a ← query(−2∗ (χ[1]− (χ[0]×a + c))× (χ[0]))

]4;[
dc ← query(−2∗ (χ[1]− (χ[0]×a + c)))

]5;
[a ← a −rate∗d a]6; [c ← c −rate∗dc]7;[

j ← j −1
]8

)
;

(a)

a0 : 1
0

c1 : 1
0

d a4 : k
1

dc5 : k
0

a6 : k
0

c7 : k
0

j 0 : 1
0

j 8 : k
0

(b)

Figure 8: (a) The linear regression algorithm (b) The program-based dependency graph from AdaptFun

This linear regression algorithm aims to model a linear relationship between a dependent variable
y , and an independent variable x, y = a × x + c, specifically approximating the model parameter a
and c. In order to have a good approximation on the model parameter a and c, it sends query to a
training data set adaptively in every iteration. This training data set contains two columns (can extend
to higher dimensional data sets), first column is used as the observed value for the independent variable
x, second column is used as the observed label value for the dependent variable y . This algorithm is
written in our Query While language in Figure 8(a) as linearRegressionGD(k,rate).

This linear regression algorithm starts from initializing the linear model parameters and the counter
variable, and then goes into the training iterations. In each iteration, it computes the differential value
w.r.t. parameter a and c respectively, through requesting two queries, query(−2∗(χ[1]−(χ[0]×a+c))×
(χ[0])) and query(−2∗(χ[1]−(χ[0]×a+c))) at line 4 and 5. Then, it uses these two differential values
stored in variable d a and dc to update the linear model parameters a and c. Its the program-based
dependency graph is shown in Figure 8(b). Its execution-based dependency graph share the same graph,
only needs to change the weight, k into wk and 1 for w1 as we do in the previous example. In the
execution-based dependency graph, there are multiple walks having the same longest query length. For
example, the walk c7 → dc6 :→ c7 →···→ dc6 along the dotted arrows, where each vertex is visited
wk (τ0) times for an initial trace τ0. There is actually other walks having the same query length k, the
walk a7 → d a6 → a7 →···→ d a6 along the dotted arrows, where each vertex is visited wk (τ0) times.
But it doesn’t affect the adaptivity for this program, which is still the maximal query length wk (τ0)
with respect to initial trace τ0. Also, AdaptFun, estimates the adaptivity k for this example. Similarly
as the multiple round example, we can show it is a tight bound.

Example 5.3 (Over-approximation Algorithm). The AdaptFun comes across an over-approximation
on the estimation due to its path-insensitive nature. It occurs when the control flow can be decided in a
particular way in front of conditional branches, while the static analysis fails to witness.

We show the over-approximation, in Figure 9(a), we call it a multiple rounds odd iteration algorithm.
In this algorithm, at line 5 of every iteration, a query query(χ[x]) based on previous query results
stored in x is asked by the analyst like in the multiple rounds strategy. The difference is that only the
query answers from the even iterations (i = 0,2, · · ·) are used in the query in line 7, query(χ[ln(y)]).
Because the execution trace only updates x using the query answers in even iterations, so the answers
from odd iterations do not affect the queries in even iterations. From the execution-based dependency
graph in Figure 9(b), we can see that the weight for the vertex y5 is wk /2. a function which takes
any initial trace τ0, return the value of k/2 evaluated in τ0. However, AdaptFun fails to realize
that odd iteration will always execute the then branch and even iteration means else branch, so
it considers both branches for every iteration. In this sense, the weight estimated for y5 and p6

are both k as in Figure 9(c). As a result, AdaptFun estimates the longest walk from Figure 9(c),

33

multipleRoundsOdd(k),[
j ← k

]0;
[
x ← query(χ[0])

]1;

while
[

j > 0
]2

do
([

j ← j −1
]3;

if (
[

j %2 == 0
]4,[

y ←χ[x]
]5,

[
p ←χ[x]

]6);[
x ← query(χ(ln(y)))

]7
)

(a)

x1 : w1
1

y5 : wk /2
1

p6 : wk /2
1

x7 : wk
1

j 0 : w1
0

j 3 : wk
0

(b)

x1 : 1
1

y5 : k
1

p6 : k
1

x7 : k
1

j 0 : 1
0

j 3 : k
0

(c)

Figure 9: (a) The multiple rounds odd example (b) The execution-based dependency graph (c) The
program-based dependency graph graph from AdaptFun.

multipleRoundsSingle(k)[
j ← 0

]0;
[
z ← query(0)

]1;
[
p ← 0

]2;

if ([k = 0]3,
[

y ← query(z)
]4,

[
skip

]5);

while
[

j 6= k
]6

do([
p ← query(χ[y]+p)

]7;
[

j ← j +1
]8

if (
[

j 6= k −2
]9,

[
p ← 0

]10,
[
skip

]10)
)
;

(a)

z1 : w1
1

p2 : w1
0

y4 : w1
1

p7 : wk
1

p10 : wk
0

j 0 : w1
0

j 8 : wk
0

(b)
Figure 10: (a) The multi rounds single example (b) The execution-based dependency graph.

y5 → x7 → y5 → ··· → x7 with each vertex visited k times, as the dotted arrows. And the adaptivity
computed is 1+2∗k, instead of 1+k.

Example 5.4 (Over-Defined Adaptivtiy Example). The program’s adaptivity in our formal model, in
Definition 20 also comes across an over-approximation on the program’s intuitive adaptivity rounds. It
is resulted from difference between its weight calculation and the variable may-dependency definition.
It occurs when the weight is computed over the traces different from the traces used in witness the
variable may-dependency relation.

As the program in Figure 10(a), which is a variant of the multiple rounds strategy, named
multipleRoundSingle(k) with input k. In this algorithm, at line 7 of every iteration, a query
query(χ[y]+p) based on previous query results stored in p and y is asked by the analyst like in the
multiple rounds strategy. The difference is that only the query answers from the one single iterations
(j = k −2) are used in this query query(χ[y]+p). Because the execution trace updates p using the
constant 0 for all the iterations where (j 6= k −2) at line 10 after the query request at line 7. In this
way, all the query answers stored in p will not be accessed in next query request at line 7 in the
iterations where (j 6= k −2). Only query answer at one single iteration where (j = k −2) will be used
in next query request query(χ[y]+p) at line 7. So the adaptivity for this example is 2. However, our
adaptivity model fails to realize that there is only dependency relation between p7 and p7 in one single
iteration, not the others. As shown in the execution-based dependency graph in Figure 10(b), there is
an edge from p7 to itself representing the existence of Variable May-Dependency from p7 on itself,
and the visiting times of labeled variable p7 is wk (τ0) with a initial trace τ0. As a result, the walk with
the longest query length is p7 → ···→ p7 → y4 → z1 with the vertex p7 visited wk (τ0), as the dotted
arrows. The adaptivity based on this walk is 2+w(τ0), instead of 2. Though the AdaptFun is able to
give us 2+k, as an accurate bound w.r.t this definition.

34

5.2 Implementation Results

We implemented AdaptFun as a tool which takes a labeled command as input and outputs an upper
bound on the program adaptivity and on the number of query requests. This implementation consists
of an abstract control flow graph generation, weight estimation (as presented in Section 4.3.3), edge
estimation (as presented in Section 4.3.2) in Ocaml, and the adaptivity computation algorithm shown
in Section 4.5 in Python. The OCaml program takes the labeled command as input and outputs the
program-based dependency graph, feeds into the python program and the python program provides the
adaptivity upper bound and the query number as the final output.

We evaluated this implementation on 17 example programs with the evaluation results shown in
Table 1. In this table, the first column is the name of each program. For each program c, the second
column is its intuitive adaptivity rounds, the third column is the A(c) we defined through our formal
semantic model above. In the third column, we use k represent the weight function wk (in program’s
execution-based dependency graph) which return value of variable k from an initial trace τ0, same for
natural numbers. The last column is the output of the AdaptFun implementation, which consists of
two expressions. The first one is the upper bound for adaptivity and the second one is the upper bound
for the total number of query requests in the program.

The first 3 programs we evaluated are twoRoundsComplete(k), multipleRoundsComplete(k),
and the linearRegressionGD(k,rate) which we discussed in overview and above section. For
these examples, A(c) give the accurate adaptivity definition, simultaneously the AdaptFun outputs the
tight bounds for both of the adaptivity and query requesting number as expected. But for the forth
program multipleRoundOdd(k), AdaptFun outputs an over-approximated upper bound 1+2∗k for
the A(c), which is consistent with our expectation as discussed in Example 5.3. The fifth program
is the evaluation results for the example in Example 5.4, where AdaptFun outputs the tight bound
for A(c) but A(c) is a loose definition of the program’s actual adaptivity rounds. The programs in the
table from seq() to nestedWhileMultiPathMultiVarRecAcross(k) are designed for testing the
programs under different possible situitions. These programs contain control dependency, data value
dependency, the nested while, dependency through multiple variables, dependency across nested loops,
and so on. Overall for these examples, our system gives both the accurate adaptivity definition and
adaptivity upper bound simultaneously through the dynamic analysis and static analysis. The full
programs are defined below from Example 5.5 to Example 5.20.

35

Table 1: Experimental results of AdaptFun implementation

Program c adaptivity rounds A(c) AdaptFun
twoRoundsComplete(k) 2 2 2, k

multipleRoundsComplete(k) k k k, k
linearRegressionGD(k,rate) k k k, 2∗k

multipleRoundsOdd(k) 1+k 1+k 1+2∗k, 1+2∗k
multipleRoundsSingle(k) 2 2+k 2+k , 2+k

seq() 4 4 4, 4
seqMultiVar() 4 4 4, 4

ifValueDependency 3 3 3, 3
ifControlDependency() 3 3 3, 3

whileRec(k) 1+k 1+k 1+k
whileMultipleVar(k) 1+2∗k 1+2∗k 1+2∗k, 2+3∗k

whileValueControlDependency(k) 1+2∗k 1+2∗k 1+2∗k, 2+2∗k
whileMultiplePathValueControlDependency(k) 2+k 2+k 2+k, 1+2∗k

nestWhileValueDependency(k) 2+k2 2+k2 2+k2, 1+k +k2

nestedWhileRecAcross(k) 1+2∗k 1+2∗k 1+2∗k, 1+k +k2

nestedWhileMultiVarRecAcross(k) 1+k +k2 1+k +k2 1+k +k2, 2+k +k2

nestedWhileMultiPathMultiVarRecAcross(k) 1+k +k2 1+k +k2 1+k +k2, 2+k +k2

Example 5.5 (Complete Two Round Algorithm).

twoRoundsComplete(k),

[a ← []]1;[
j ← k

]2;

while
[

j > 0
]3

do([
x ← query(χ[k − j] ·χ[k])

]4;[
j ← j −1

]5;

[a ← x :: a]6
)
;[

l ← (sign
(∑

i∈[k]χ[i]× ln 1+a[i]
1−a[i]

)
)
]7

Algorithm 4 A two-round analyst strategy for random data (The example in [1])

Require: Mechanism M with a hidden data set D ∈ {−1,+1}n×(k+1) ⊂DB.
for j ∈ [k] do.

define q j (d) = d(j) ·d(k) where d ∈ {D(i) | i = 0, · · · ,n} ⊆ {−1,+1}k+1.
let a j =M(q j)
{In the line above, M computes approx. the exp. value of q j over D. So, a j ∈ [−1,+1].}

define qk (d) = d(k) · sign
(∑

i∈[k] x(i) · ln 1+ai
1−ai

)
where x ∈ {−1,+1}k+1.

{In the line above, sign(y) =
{ +1 if y ≥ 0

−1 otherwise
.}

let ak+1 =M(qk+1)
{In the line above, M computes approx. the exp. value of qk+1 over X . So, ak+1 ∈ [−1,+1].}
return ak+1.

Ensure: ak+1 ∈ [−1,+1]

We have seen the two round algorithm above. We show the multiple-round algorithm, which is an
advanced algorithm.

36

Algorithm 5 A multi-round analyst strategy for random data base [1]
Example 5.6 (Complete Multiple Round Algorithm). Require: Mechanism M with a hidden state X ∈ [N]n

sampled u.a.r., control set size c
Define control dataset C = {0,1, · · · ,c −1}
Initialize N scor e(i) = 0 for i ∈ [N], I =; and C scor e(C (i)) = 0 for i ∈ [c]
for j ∈ [k] do

let p = uniform(0,1)
define q(x) = bernoulli(p) .
define qc(x) = bernoulli(p) .
let a =M(q)
for i ∈ [N] do

N scor e(i) = N scor e(i)+ (a −p)∗ (q(i)−p) if i ∉ I
for i ∈ [c] do

C scor e(C (i)) =C scor e(C (i))+ (a −p)∗ (qc(i)−p)
let I = {i |i ∈ [N]∧N scor e(i) > max(C scor e)}
let D = D \ I

return D.

multipleRoundsComplete(k,c,N),[
j ← N

]0; [cs ← 0]1; [ns ← 0]2; [I ← 0]3; [w ← k]4;

while
[

j > 0
]5

do([
j ← j −1

]6; [cs ← 0+ cs]7; [ns ← 0+ns]8
)
;

while [w > 0]9 do(
[w ← w −1]10;

[
p ← c

]11;
[
q ← c

]12;
[
a ← query(χ[I])

]13;

[i ← N]14; while [i > 0]15 do(
[i ← i −1]16;

[
cs(i) ← cs(i)+ (a −p)∗ (q −p)

]17;

if ([I < i]18,
[
ns(i) ← ns(i)+ (a −p)∗ (q −p)

]19, [ns ← ns(i)]20)
)
;

[i 2 ← N]21;
while [i 2 > 0]22 do(
[i 2 ← i 2−1]23; if ([ns(i 2) > max(cs)]24, [I ← i + I]25, [I ← I]26)

))
(a)

Figure 11: (a) The labeled program implementing the multiple round algorithm (b)The same program
in the SSA version

37

Example 5.7 (Gradient Decent Optimization Algorithm). This example is the gradient decent algorithm
example is a generalization of the linear regression on a higher degree data relation. It uses gradient
decent algorithm to minimize the mean square loss function for a two-degree relation y = a1 × x2

1 +
a2 ×x2 + c on the dataset of two feature columns and one indicator column.

gradientDecent(step,rate,t,n),
[a1 ← 0]0;
[a2 ← 0]1;
[c ← 0]2;[

j ← step
]3;

while
[

j > 0
]4

do([
d a1 ← query(−2∗ (χ[2]− (χ[0]2 ×a1 +χ[1]×a2 + c))× (χ[0]))

]5
;[

d a2 ← query(−2∗ (χ[2]− (χ[0]2 ×a1 +χ[1]×a2 + c))× (χ[1]))
]6

;[
dc ← query(−2∗ (χ[2]− (χ[0]2 ×a1 +χ[1]×a2 + c)))

]5
;

[a1 ← a1 −rate∗d a1]7;
[a2 ← a2 −rate∗d a2]8;
[c ← c −rate∗dc]9;[

j ← j −1
]10

)
;

It is easy to see, this approach can be generalized to the regression of a variety of relations in machine
learning area.

Example 5.8 (convex optimization Algorithm).

gradientDecent(step,rate,t,n),
[a ← []]0;[

j ← step
]1;

while
[

j > 0∧d < t
]3

do([
d ← query(2∗ (χ[1]− (χ[0]×x))∗ (−χ[0]))

]4;

[x ← x −rate∗d]4;[
j ← j −1

]5;

[a ← x :: a]6
)
;

Example 5.9 (Sequence with Single Variable Linear Data Value Dependency).

seq(),

[
x ←χ[0]

]0;[
y ←χ[x +1]

]1;[
z ←χ[y +1]

]2;[
w ←χ[z +1]

]3

Analysis Result: Aprog(seq()) = 4

Example 5.10 (Sequence with Multiple Variables Data Value Dependency).

seqMultiVar(),

[
x ←χ[0]

]0;[
y ←χ[x +1]

]1;[
z ←χ[y +x]

]2;[
w ←χ[z +1] ·χ[y]

]3

Analysis Result: Aprog(seqMultiVar()) = 4

38

Example 5.11 (If with Data-Value Dependency Separated).

ifValueDependency(k),

[
z ← query(χ[0])

]0;
[x ← k/2]1;
if ([x < 0]2,[
y ← query(χ[z])

]3,[
y ← query(χ[0])

]4)

Analysis Result: Aprog(ifControlDependency()) = 3

Example 5.12 (If with Data-Control Dependency Overlapped).

ifControlDependency(),

[
z ← query(χ[0])

]0;[
x ← query(χ[z])

]1;

if ([x < 0]2,
[

y ← query(χ[0]+χ[1])
]3,

[
y ← query (χ[0])

]4)

Analysis Result: Aprog(ifControlDependency()) = 3

Example 5.13 (Simple While with Recursive Data-Value Dependency).

whileRec(k),

[
j ← k

]0;[
a ← query(χ[0])

]1;

while
[

j > 0
]2

do([
x ← query(χ[a])

]3;

[a ← x +a]4;[
j ← j −1

]5
)

Analysis Results: Aprog(whileRec(k)) = 1+k

Example 5.14 (Simple While with Multi-Path Data-Value Dependency).

whileMultiplePath(k),

[
j ← k

]0;[
x ← query(χ[0])

]1;

while
[

j > 0
]2

do([
j ← j −1

]3;

if (
[

j %2 == 0
]4,

[
y ←χ[x]

]5,
[
w ←χ[x]

]6);[
x ← query(χ(ln(y)))

]7
)

Analysis Results: Aprog(whileMultiplePath(k)) = 1+2∗k –> Over-Approximated

Example 5.15 (Simple While with Recursive Multiple-Variable Data-Value Dependency).

whileMultipleVar(k),

[
j ← k

]0;[
x ← query(χ[0])

]1;[
y ← query(χ[1])

]2;

while
[

j > 0
]3

do([
j ← j −1

]4;[
z ← query(χ(x + ln(y)))

]5;[
x ← query(χ[z])

]6;[
y ← query(χ[z])

]7
)

Analysis Results: Aprog(whileMultipleVar(k)) = 1+2∗k

39

Example 5.16 (Simple While with Data-Value and Data-Control Dependency).

whileValueControlDependency(),

[
x ← query(χ[0])

]0;[
z ← query(χ[0])

]1;
while [x > 0]2 do([

x ← query(χ(z))
]3;[

z ← query(χ(x))
]4

)
Analysis Results: Aprog(whileValueControlDependency(k)) = 1+2∗k

Example 5.17 (Simple While with MultiplePath Data-Value and Data-Control Dependency).

whileMultiplePathValueControlDependency(k),[
x ← query(k)

]0;[
y ← 0

]1;
while [x > 0]2 do(
if (

[
y > 0

]3,
[

y ← query(χ[12])
]4,

[
w ← query(χ[9])

]5);

[x ← x −1]6
)
;[

y ← query(χ(ln(y)))
]7

Analysis Results: Aprog(whileMultiplePathValueControlDependency(k)) = 2+k

Example 5.18 (Nested While with Recursive Data-Value Dependency).

nestWhileValueDependency(k),

[i ← k]0;[
x ← query(χ[0])

]1;
while [i > 0]2 do(
[i ← i −1]3;[
j ← k

]4;[
y ← query(χ(ln(x)))

]5;

while
[

j > 0
]6

do([
j ← j −1

]7;[
x ← query(χ(ln(x)))

]8
))

Analysis Results: Aprog(nestWhileValueDependency(k)) = 2+k2

Example 5.19 (Nested While with Nested Recursive Data-Value Dependency Across Outer and Inner
Loop).

nestedWhileRecAcross(k),

[i ← k]0;[
x ← query(χ[0])

]1;
while [i > 0]2 do(
[i ← i −1]3;[
j ← k

]4;

while
[

j > 0
]5

do([
j ← j −1

]6;[
y ← query(χ(x)+χ(1))

]7
)
;[

x ← query(χ(ln(y)))
]8

)
40

Analysis Results: Aprog(nestedWhileRecAcross(k)) = 1+2∗k

Example 5.20 (Nested While with Nested Recursive Multiple Variable Data-Value Dependency Across
Outer and Inner Loop).

nestedWhileMultiVarRecAcross(k),

[i ← k]0;[
x ← query(χ[0])

]1;[
y ← query(χ[1])

]2;
while [i > 0]3 do(
[i ← i −1]4;[
j ← k

]5;[
y ← query(χ(ln(x)+ y))

]6;

while
[

j > 0
]7

do([
j ← j −1

]8;[
x ← query(χ(ln(y))+χ[x])

]9
))

Analysis Results: Aprog(nestedWhileMultiVarRecAcross(k)) = 1+k +k2

Reachability Bound Analysis Results:
weight for Variable: j of label 6 is: 0 + 0 + 1 * k * k
weight for Variable: y of label 7 is: 0 + 0 + 1 * k * k
weight for Variable: j of label 4 is: 0 + 1 * k
weight for Variable: i of label 3 is: 0 + 1 * k
weight for Variable: x of label 8 is: 0 + 1 * k
weight for Variable: x of label 1 is: 1
weight for Variable: i of label 0 is: 1

Example 5.21 (Nested While with MultiplePath and Nested Recursive Multiple Variable Data-Value
Dependency Across Outer and Inner Loop). We then show a more complex example with nested while
command and nested data-flow across the outer and inner while loop through multiple variables. This
example also contains the if command with data dependency occurred through the if guard.

nestedWhileMultiPathMultiVarRecAcross(k),
[i ← k]0;[
x ← query(χ[0])

]1;[
y ← query(χ[1])

]2;
while [i > 0]3 do(
[i ← i −1]4;[
j ← k

]5;

if ([x > 0]6,
[

y ← query(χ(ln(x)+ y))
]7,

[
y ← query(χ(x))

]8);

while
[

j > 0
]9

do([
j ← j −1

]10;[
x ← query(χ(ln(y))+χ[x])

]11
))

Analysis Results: Aprog(nestedWhileMultiPathMultiVarRecAcross(k)) = 1+k +k2

Reachability Bound Analysis Results:

41

weight for Variable: j of label 10 is: 0 + 0 + 1 * k * k
weight for Variable: x of label 11 is: 0 + 0 + 1 * k * k
weight for Variable: y of label 7 is: 0 + 1 * k
weight for Variable: y of label 8 is: 0 + 1 * k
weight for Variable: j of label 5 is: 0 + 1 * k
weight for Variable: i of label 4 is: 0 + 1 * k
weight for Variable: y of label 2 is: 1
weight for Variable: x of label 1 is: 1
weight for Variable: i of label 0 is: 1

42

Appendices

A Proofs of Lemmas in Section 1, 2 and 3

Lemma A.1 (Uniqueness of the Labeled Variables). For every program c ∈C and every two labeled
variables such that xi , y j ∈ LV(c), then xi 6= y j .

∀c ∈C, xi , y j ∈L . xi , y j ∈ LV(c) =⇒ xi 6= y j .

Proof.

Lemma A.2 (Trace Non-Decreasing). For every program c ∈ C and traces τ,τ′ ∈ T, if 〈c,τ〉 →∗

〈skip,τ′〉, then there exists a trace τ′′ ∈T with τ++τ′′ = τ′

∀τ,τ′ ∈T,c . 〈c,τ〉→∗ 〈skip,τ′〉 =⇒ ∃τ′′ ∈T . τ++τ′′ = τ′

Proof. Taking arbitrary trace τ ∈T, by induction on program c, we have the following cases:

case: c = [x ← e]l

By the evaluation rule assn, we have 〈[x ← a]l ,τ〉 −→ 〈skip,τ :: (x, l , v,•)〉, for some v ∈N.
Picking τ′ = τ :: (x, l , v,•) and τ′′ = [(x, l , v,•)], it is obvious that τ++τ′′ = τ′.
This case is proved.

case: c = [x ← query(ψ)]l ′

This case is proved in the same way as case: c = [x ← e]l .

case: while [b]lw do c
By the first rule applied to c, there are two cases:

sub-case: while-t
If the first rule applied to is while-t, we have
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ :: (b, lw ,true,•)〉 (1).
Let τ′w ∈T be the trace satisfying following execution:
〈cw ,τ :: (b, lw ,true,•)〉 ∗−→〈skip,τ′w 〉
By induction hypothesis on sub program cw with starting trace τ :: (b, lw ,true,•) and ending trace τ′w ,
we know there exist τw ∈T such that τ′w = τ :: (b, lw ,true,•)++τw .
Then we have the following execution continued from (1):
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ :: (b, lw ,true,•)〉 ∗−→〈 while [b]lw do cw ,τ :: (b, lw ,true,•)++τw 〉 (2)
By repeating the execution (1) and (2) until the program is evaluated into skip, with trace τi ′

w for
i = 1, · · · ,nn ≥ 1 in each iteration, we know in the i − th iteration, there exists τi

w ∈ T such that
τi ′

w = τ(i−1)′
w :: (b, lw ,true,•)++τi ′

w

Then we have the following execution:
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ :: (b, lw ,true,•)〉 ∗−→〈 while [b]lw do cw ,τn′

w 〉 −→while-f

〈skip,τn′
w :: (b, lw ,false,•)〉 and τn′

w = τ :: (b, lw ,true,•)++τ1
w :: · · · :: (b, lw ,true,•)++τn

w .
Picking τ′ = τn′

w :: (b, lw ,false,•) and τ′′ = [(b, lw ,true,•)]++τ1
w :: · · · :: (b, lw ,true,•)++τn

w , we have
τ++τ′′ = τ′.
This case is proved.

sub-case: while-f
If the first rule applied to c is while-f, we have
〈 while [b]lw do cw ,τ〉 −→while-f 〈skip,τ :: (b, lw ,false,•)〉, In this case, picking τ′ = τ :: (b, lw ,false,•)

43

and τ′′ = [(b, lw ,false,•)], it is obvious that τ++τ′′ = τ′.
This case is proved.

case: if ([b]l ,ct ,c f)
This case is proved in the same way as case: c = while [b]l do c.

case: c = cs1;cs2

By the induction hypothesis on cs1 and cs2 separately, we have this case proved.

Corollary A.0.1. For every event and a trace τ ∈T, if ε ∈ τ, then there exist another event ε′ ∈E and
traces τ1,τ2 ∈T such that τ1++[ε′]++τ2 = τ with ε and ε′ equivalent but may differ in their query value.

∀ε ∈E,τ ∈T . ε ∈ τ =⇒ ∃τ1,τ2 ∈T,ε′ ∈E . (ε ∈ ε′)∧τ1++[ε′]++τ2 = τ

Proof. By unfolding the aq ∈aq t , we have the following cases:

case: t = []
The hypothesis is false, this case is proved.

case: t = aq′ :: t ′∧aq′ =aq aq

Let t1 = [] and t2 = t ′, by unfolding the list concatenation operation, we have:

t1 ++[aq′]++t2 = []++[aq′]++t ′ = t

Since aq′ =aq aq by the hypothesis, this case is proved.

case: t = aq′ :: t ′∧aq′ 6=aq aq

By induction hypothesis on aq ∈aq t ′, we know:

∃t ′1, t ′2,aq′′. s.t ., (aq=aq aq
′′)∧ t ′1 ++[aq′′]++t ′2 = t ′

Let t1 = aq′ :: t ′1 and t2 = t ′2, by unfolding the list concatenation operation, we have:

t1 ++[aq′′]++t2 = (aq′ :: t ′1)++[aq′′]++t ′2 = aq′ :: t ′ = t

Since aq′′ =aq aq by the hypothesis, this case is proved.

44

B Soundness of AdaptFun

Theorem B.1 (Soundness of the AdaptFun). Given a program c, we have:

∀τ ∈T . 〈Aprog(c),τ〉 ⇓e n =⇒ n ≥ A(c)(τ)

Proof Summary:
construct the program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
1. prove the one-on-one mapping from Vprog to Vtrace, in Lemma C.1;
2. prove the total map from Etrace to Eprog, in Lemma C.2;
3. prove that the weight of every vertex in Gtrace is bounded by the weight of the same vertex in Gprog,
in Lemma B.3;
4. prove the one-on-one mapping from Qprog to Qtrace, in Lemma B.4;
5. show every walk in WK(Gtrace) is bounded by a walk in WK(Gprog) of the same lenq.
6. get the conclusion that A(c) is bounded by the Aprog(c).

Proof. Given a program c, we construct its
program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog) by Definition 27
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace) by Definition 17.
The parameter (c) for the components in the two graphs are omitted for concise.
According to the Definition 30 and Definition 20, it is sufficient to show:

∀τ ∈T . 〈max
{
lenq(k) | k ∈WK(Gprog(c))

}
,τ〉 ⇓e n =⇒ n ≥ max

{
lenq(k)(τ) | k ∈WK(Gtrace(c))

}
Then it is sufficient to show that:

∀kt ∈WK(Gtrace(c),∃kp ∈WK(Gprog(c)) . ∀τ ∈T . lenq(kp),τ ⇓e n =⇒ n ≥ lenq(kt (τ))

Let kt ∈WK(Gtrace(c)) be an arbitrary walk in Gtrace(c), and τ ∈T be arbitrary trace.
Then, let (ep1, · · · ,ep(n−1)) and (v1, · · · , vn) be the edges and vertices sequence for kt (τ).
By Lemma C.1 and Lemma C.2, we know

∀ei ∈ kt . ei = (vi , vi+1) =⇒ ∃epi . epi = (vi , vi+1)∧epi ∈ Eprog
Then we construct a walk kp with an edge sequence (ep1, · · · ,ep(n−1)) with a vertices sequence
(v1, · · · , vn) where epi = (vi , vi+1) ∈ Eprog for all epi ∈ (ep1, · · · ,ep(n−1)).
Let n ∈N such that 〈lenq(kp),τ〉 ⇓e n, then, it is sufficient to show

kp ∈ Gprog(c)∧n ≥ lenq(kt)(τ)

To show kp ∈ Gprog(c), by Definition 18 for finite walk, we know

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Wtrace(c) . visit((v1, · · · , vn), (vi)) ≤ wi (τ)

By Lemma B.3, we know for every

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Wprog(c),ni ∈N . 〈wi ,τ〉 ⇓e ni =⇒ wi (τ) ≤ ni (?)

Then, by Definition 28, we know the occurrence times for every vi ∈ (v1, · · · , vn) is bound by the
arithmetic expression wi where (vi , wi) ∈ Wprog(c).

45

So we have kp ∈WK(Gprog) proved.
In order to show n ≥ lenq(kt)(τ), it is sufficient to show

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Wprog(c), (vi , w ′
i) ∈ Wtrace(c),ni ∈N . 〈wi ,τ〉 ⇓e ni

=⇒ ∑
Qtrace(c)(vi)=1

w ′
i (τ) ≤ ∑

Qprog(c)(vi)=1
ni

By Lemma B.4 and Definition 29, we know for every vi , Qtrace(c)(vi) = Qprog(c)(vi)
Then by (?), we know

∑
Qtrace(c)(vi)=1

w ′
i (τ) ≤ ∑

Qprog(c)(vi)=1
ni .

Then we have n ≥ lenq(kt)(τ) proved.
This theorem is proved.

The following are the four lemmas used in the proof of Theorem C.1 above, showing the corre-
spondence properties between the program based graph and trace based graph.

Lemma B.1 (One-on-One Mapping of vertices from Gtrace to Gprog). Given a program c with
its program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog) and trace-based graph Gtrace(c) =
(Vtrace,Etrace,Wtrace,Qtrace), then for every v ∈VAR×N, v ∈ Vprog if and only if v ∈ Gtrace.

∀c ∈C, v ∈VAR×N . Gprog(c) = (Vprog,Eprog,Wprog,Qprog)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ v ∈ Vprog ⇐⇒ v ∈ Vtrace

Proof. Proof Summary: Proving by Definition 27 and Definition 17.
Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
By the two definitions, we also know Vtrace = LVc and Vprog = LVc .
Then we know Vtrace = Vprog, i.e., for arbitrary v ∈VAR×N, v ∈ Vprog ⇐⇒ v ∈ Vtrace.

Lemma B.2 (Mapping from Egdes of Gtrace to Gprog). Given a program c with its program-based
graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace),
then for every e = (v1, v2) ∈ Etrace, there exists an edge e ′ = (v ′

1, v ′
2) ∈ Eprog with v1 = v ′

1 ∧ v2 = v ′
2.

∀c ∈C . Gprog(c) = (Vprog,Eprog,Wprog,Qprog)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ ∀e = (v1, v2) ∈ Etrace . ∃e ′ ∈ Eprog . e ′ = (v1, v2)

Proof. Proof Summary: Proving by Lemma C.1, Lemma D.1 Definition 27 and Definition 17
Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
Taking arbitrary edge e = (xi , y j) ∈ Etrace, it is sufficient to show (xi , y j) ∈ Eprog.
By Lemma C.1, we know xi , y j ∈ Vprog.
By definition of Etrace, we know DEPvar(xi , y j ,c).
By Theorem D.1, we know ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

Then by definition of Eprog, we know (xi , y j) ∈ Eprog. This Lemma is proved.

Lemma B.3 (Weights are bounded). Given a program c with its program-based graph Gprog(c) =
(Vprog,Eprog,Wprog,Qprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace), for every
v ∈ Vtrace, there is v ∈ Vprog and Wtrace(v) ≤ Wprog(v).

∀c ∈C . Gprog(c) = (Vprog,Eprog,Wprog,Qprog)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ ∀v ∈ Vtrace . v ∈ Vprog∧Wtrace(v) ≤ Wprog(v)

46

∀c ∈C . Gprog(c) = (Vprog,Eprog,Wprog,Qprog)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ ∀(x l , wt) ∈ Wtrace, (x l , wp) ∈ Wprog,τ,τ′ ∈T, v ∈N . 〈wp ,τ〉 ⇓e v =⇒ wt (τ) ≤ v

Proof. Proof Summary: Proving by Definition 27, Definition 17 and relying on the soundness of
Reachability Bound Analysis.
Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
Taking arbitrary (x l , wt) ∈ Wtrace, (x l , wp) ∈ Wprog,τ,τ′ ∈T, satisfying:
〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈wp ,τ〉 ⇓e v
By soundness of reachability bound analysis in Theorem ??, we know cnt(τ′, l) ≤ v
By definition 17, we know wt (τ) = cnt(τ′, l), then we have wt (τ) ≤ v and this is proved.

Lemma B.4 (One-on-One Mapping for Query Vertices). Given a program c with its program-based
graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace),
then for every (xi ,n) ∈VAR×N× {0,1}, (xi ,n) ∈ Qtrace if and only if (xi ,n) ∈ Qprog.

∀c ∈C, (xi ,n) ∈VAR×N× {0,1} .
Gprog(c) = (Vprog,Eprog,Wprog,Qprog)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ (xi ,n) ∈ Qtrace ⇐⇒ (xi ,n) ∈ Qprog

Proof. Proving by Definition 27, Definition 17.
Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog,Wprog,Qprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
By the two definitions, we also know Qtrace = Qprog, i.e., for arbitrary (xi ,n) ∈ VAR×N× {0,1},
(xi ,n) ∈ Qtrace ⇐⇒ (xi ,n) ∈ Qprog.
This lemma is proved. �

47

C Soundness of AdaptFun with Dependency Graph and Adaptivity Ex-
tension

Theorem C.1 (Soundness of the AdaptFun). Given a program c, we have:

∀τ ∈T . 〈Aprog(c),τ〉 ⇓e n =⇒ n ≥ A(c)(τ)

Proof. Given a program c, we construct its
program-based graph Gprog(c) = (Vprog,Eprog) by Definition 27
and trace-based graph Gtrace(c) = (Vtrace,Etrace) by Definition 17.
The parameter (c) for the components in the two graphs are omitted for concise.
According to the Definition 30 and Definition 20, it is sufficient to show:

∀τ ∈T . 〈max
{
lenq(k) | k ∈WK(Gprog(c))

}
,τ〉 ⇓e n =⇒ n ≥ max

{
lenq(k)(τ) | k ∈WK(Gtrace(c))

}
Then it is sufficient to show that:

∀kt ∈WK(Gtrace(c),∃kp ∈WK(Gprog(c)) . ∀τ ∈T . lenq(kp),τ ⇓e n =⇒ n ≥ lenq(kt (τ))

Let kt ∈WK(Gtrace(c)) be an arbitrary walk in Gtrace(c), and τ ∈T be arbitrary trace.
Then, let (ep1, · · · ,ep(n−1)) and (v1, · · · , vn) be the edges and vertices sequence for kt (τ).
By Lemma C.1 and Lemma C.2, we know

∀ei ∈ kt . ei = (vi , w t
i , vi+1) =⇒ ∃epi . epi = (vi , w p

i , vi+1)∧epi ∈ Eprog
Then we construct a walk kp with an edge sequence (ep1, · · · ,ep(n−1)) with a vertices sequence
(v1, · · · , vn) where epi = (vi , vi+1) ∈ Eprog for all epi ∈ (ep1, · · · ,ep(n−1)).
Let n ∈N such that 〈lenq(kp),τ〉 ⇓e n, then, it is sufficient to show

kp ∈ Gprog(c)∧n ≥ lenq(kt)(τ)

To show kp ∈ Gprog(c), by Definition 18 for finite walk, we know

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Wtrace(c) . visit((v1, · · · , vn), (vi)) ≤ wi (τ)

By Lemma C.3, we know for every

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Vprog(c),ni ∈N . 〈wi ,τ〉 ⇓e ni =⇒ wi (τ) ≤ ni (?)

Then, by Definition 28, we know the occurrence times for every vi ∈ (v1, · · · , vn) is bound by the
arithmetic expression wi where (vi , wi) ∈ Vprog(c).
Also, by Lemma C.4, we know for every

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Vprog(c),ni ∈N . 〈wi ,τ〉 ⇓e ni =⇒ wi (τ) ≤ ni (?)

Then, by Definition 28, we know the occurrence times for every vi ∈ (v1, · · · , vn) is bound by the
arithmetic expression wi where (vi , wi) ∈ Vprog(c).
So we have kp ∈WK(Gprog) proved.
In order to show n ≥ lenq(kt)(τ), it is sufficient to show

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Wprog(c), (vi , w ′
i) ∈ Wtrace(c),ni ∈N . 〈wi ,τ〉 ⇓e ni

=⇒ ∑
vi∈LV(c)

w ′
i (τ) ≤ ∑

vi∈LV(c)
ni

48

Then by (?), we know
∑

vi∈LV(c)
w ′

i (τ) ≤ ∑
vi∈LV(c)

ni .

Then we have n ≥ lenq(kt)(τ) proved.
This theorem is proved.

The following are the four lemmas used in the proof of Theorem C.1 above, showing the corre-
spondence properties between the program based graph and trace based graph.

Lemma C.1 (One-on-One Mapping of vertices from Gtrace to Gprog). Given a program c with its
program-based graph Gprog(c) = (Vprog,Eprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace), then
for every v ∈VAR×N, v ∈ Vprog if and only if v ∈ Gtrace.

∀c ∈C, v ∈LV . Gprog(c) = (Vprog,Eprog)∧Gtrace(c) = (Vtrace,Etrace)
=⇒ (v,_) ∈ Vprog ⇐⇒ (v,_) ∈ Vtrace

Proof. Proof Summary: Proving by Definition 27 and Definition 17.
Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace).
By the two definitions, we know Vtrace = {(v, w t) | v ∈ LV(c)} and Vprog = {(v, w p) | v ∈ LV(c)}.
Then we know (v,_) ∈ Vprog ⇐⇒ (v,_) ∈ Vtrace.
This theorem is proved.

Lemma C.2 (Mapping from Egdes of Gtrace to Gprog). Given a program c with its program-based
graph Gprog(c) = (Vprog,Eprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace), then for every
e = (v1,_, v2) ∈ Etrace, there exists an edge e ′ = (v ′

1,_, v ′
2) ∈ Eprog with v1 = v ′

1 ∧ v2 = v ′
2.

∀c ∈C . Gprog(c) = (Vprog,Eprog)∧Gtrace(c) = (Vtrace,Etrace)
=⇒ ∀e = (v1,_, v2) ∈ Etrace . ∃e ′ ∈ Eprog . e ′ = (v1,_, v2)

Proof. Proof Summary: Proving by Lemma C.1, Lemma D.1 Definition 27 and Definition 17
Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace).
Taking arbitrary edge e = (xi ,_, y j) ∈ Etrace, it is sufficient to show (xi ,_, y j) ∈ Eprog.
By Lemma C.1, we know (xi ,_), (y j ,_) ∈ Vprog.
By definition of Etrace, we know there is an initial trace τ0 ∈ T0(c) and two witness traces τ1,τ2 ∈ T
such that DEP(xi , y j ,τ0,τ1,τ2,c).
By Theorem D.1, we know ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

Then by definition of Eprog, we know (xi ,_, y j) ∈ Eprog. This Lemma is proved.

Lemma C.3 (Vertex Weights are bounded). Given a program c with its program-based graph
Gprog(c) = (Vprog,Eprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace), for every (x l , wt) ∈ Vtrace,
there is (x l , wp) ∈ Vprog and wp is a bound on wt .

∀c ∈C . Gprog(c) = (Vprog,Eprog)∧Gtrace(c) = (Vtrace,Etrace) =⇒
∀(x l , w t) ∈ Vtrace, (x l , w p) ∈ Vprog,τ0 ∈T0(c),τ′ ∈T, v ∈N . 〈c,τ0〉→∗ 〈skip,τ++τ′〉∧〈w p ,τ0〉 ⇓e v
=⇒ w t (τ) ≤ v

49

Proof. Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace).
Taking arbitrary (x l , w t) ∈ Vtrace, (x l , w p) ∈ Vprog,τ0 ∈T0(c),τ′ ∈T, satisfying:
〈c,τ0〉→∗ 〈skip,τ0++τ′〉∧〈w p ,τ0〉 ⇓e v
By soundness of reachability bound analysis in Theorem E.1, we know cnt(τ′, l) ≤ v
By definition 17, we know w t (τ) = cnt(τ′, l), then we have w t (τ) ≤ v and this is proved.

Lemma C.4 (Edge Weights are bounded). Given a program c with its program-based graph Gprog(c) =
(Vprog,Eprog) and trace-based graph Gtrace(c) = (Vtrace,Etrace), for every e = (v1, w p , v2) ∈ Etrace
and e ′ = (v1, w t , v2) ∈ Eprog, w p is a bound on w t .

∀c ∈C . Gprog(c) = (Vprog,Eprog)∧Gtrace(c) = (Vtrace,Etrace) =⇒
∀(v1, w p , v2) ∈ Etrace, (v1, w t , v2) ∈ Eprog,τ0 ∈T0(c),τ′ ∈T, v ∈N . 〈c,τ0〉→∗ 〈skip,τ0++τ′〉∧〈w p ,τ0〉 ⇓e v
=⇒ w t (τ) ≤ v

Proof. Taking arbitrary program c, by Definition 27 and Definition 17, we have
its program-based graph Gprog(c) = (Vprog,Eprog)
and trace-based graph Gtrace(c) = (Vtrace,Etrace).
Taking arbitrary e = (v1, w p , v2) ∈ Etrace, e ′ = (v1, w t , v2) ∈ Eprog, and τ,τ′ ∈T, satisfying:
〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈w p ,τ〉 ⇓e v
By soundness of reachability bound analysis in Theorem F.1, we know cnt(τ′, l) ≤ v
By definition 17, we know w t (τ) = cnt(τ′, l), then we have w t (τ) ≤ v and this is proved.

50

D Soundness of flowsTo with Language and Adaptivity Extension

Theorem D.1 (DEP implies flowsTo). Given a program c, for all xi , y j ∈ LVc , if there exist two
witness traces and an initial trace satisfying DEP(xi , y j ,τ1,τ2,τ0,c), then there exist zr1

1 , · · · , zrn
n ∈ LVc

with n ≥ 0 such that flowsTo(xi , zr1
1 ,c)∧·· ·∧flowsTo(zrn

n , y j ,c)

∀xi , y j ∈ LVc .(∃τ1,τ2 ∈T,τ0 ∈T0(c) . DEP(xi , y j ,τ1,τ2,τ0,c))

=⇒
(
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c)

)
Proof Summary:

induction on c. Proved by induction hypothesis in if and while case, and cases analysis in seq case.

Proof. By induction on program c, we have the following cases:

case: c = [
skip

]l

By LV in Definition 5, we know LV(c) =; and the theorem is vacuously true.

case: c = [x ← e]l

case: c = [
x ← query(ψ)

]l

This case is proved in the same way as case: c = [x ← e]l .

case: c = [fun]l : f (r lr , x1, . . . , xn) := c
This case is proved in the same way as case: c = [x ← e]l .

case: c = if ([b]l ,c1,c2)
Let τ,τ′ ∈T,τ0 ∈T0(c) be the two witness traces and initial trace satisfying DEP(xi , y j ,τ1,τ2,τ0, if ([b]l ,c1,c2)).
By may-dependency in Definition 16, let τ′0 ∈T0(c) be the initial trace satisfying,
(1) (∀zr 6= xi . ρ(τ0, zr) 6= ρ(τ′0, zr)) and
(2) 〈 if ([b]l ,c1,c2),τ0〉→∗ 〈[skip]l ,τ0++τ〉 and
(3) 〈 if ([b]l ,c1,c2),τ′0〉→∗ 〈[skip]l ,τ′0++τ′〉 and
(4) Diffseq(τ,τ′, y j) 6= ;.
By the evaluation rules for if ([b]l ,c1,c2), we have the two following cases on the evaluation in (2).

sub-case: (2) : if-t
〈 if ([b]l ,c1,c2),τ0〉→if-t 〈c1,τ0 :: (b, l ,true,•)〉→∗ 〈[skip]l ,τ0 :: (b, l ,true,•)++τ1〉.
Accordingly, there are also two cases on the evaluation in (3) as follows,

subsub-case: (3) : if-f
〈 if ([b]l ,c1,c2),τ′0〉→if-f 〈c2,τ′0 :: (b, l ,false,•)〉→∗ 〈[skip]l ,τ′0 :: (b, l ,false,•)++τ′2〉
By (1) and Inversion Lemma D.1(3) of boolean expression evaluation, we know x ∈ FV (b) and
x l ∈ RD(l ,c).
By Diffseq(τ,τ′, y j) 6= ;, we know y j ∈ LV(c1)∪LV(c2).
Then, by flowsTo in Definition 24, we know flowsTo(xi , y j ,c), this case is proved.

subsub-case: (3) : if-t
〈 if ([b]l ,c1,c2),τ′0〉→if-t 〈c1,τ′0 :: (b, l ,true,•)〉→∗ 〈[skip]l ,τ′0 :: (b, l ,true,•)++τ′1〉
To show :

(
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

We first have the following induction hypothesis,
(IH) (∃τi h ,τ′i h ∈ T,τi h0 ∈ T0(c1) . DEP(xi , y j ,τi h ,τ′i h ,τi h0,c1)) =⇒

(
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc1 . n ≥

0∧flowsTo(xi , zr1
1 ,c1)∧·· ·∧flowsTo(zrn

n , y j ,c1)
)
.

51

Constructing τi h0 = τ0 :: (b, l ,true,•), τi h = τ1 and τ′i h = τ′1.
By (1), we know ∀zr 6= xi ,
(ih1)(ρ(τ0 :: (b, l ,true,•), zr) = ρ(τ′0 :: (b, l ,true,•), zr)).
We also have two following evaluations:
(ih2) 〈c1,τ0 :: (b, l ,true,•)〉→∗ 〈[skip]l ,τ0++τ1〉
(ih3) 〈c1,τ′0 :: (b, l ,true,•)〉→∗ 〈[skip]l ,τ′0++τ′1〉
By the determinism of evaluation, we have τ= (b, l ,true,•)++τ1 and τ′ = (b, l ,true,•)++τ1.
By (4) and Diffseq in Definition 14, we then have
(ih4) Diffseq((b, l ,true,•)++τ1, (b, l ,true,•)++τ′1, y j) = Diffseq(τ1,τ′1, y j) 6= ;
Then, by (ih1) - (ih4), we know
(∃τi h ,τ′i h ∈T,τi h0 ∈T0(c1) . DEP(xi , y j ,τi h ,τ′i h ,τi h0,c1)).
Then, by induction hypothesis (IH), we know
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc1 . n ≥ 0∧flowsTo(xi , zr1

1 ,c1)∧·· ·∧flowsTo(zrn
n , y j ,c1)

Then, by the flowsTo in Definition 24, we have
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

This case is proved.

sub-case: (2) : if-f
This sub-case is proved in exactly the same way as sub-case: (2) : if-t.

case: c = while [b]l do c
This case is proved in exactly the same way as case: c = if ([b]l ,c1,c2).

case: c = c1;c2

Let τ,τ′ ∈T,τ0 ∈T0(c) be the two witness traces and initial trace satisfying DEP(xi , y j ,τ1,τ2,τ0,c1;c2).
By may-dependency in Definition 16, let τ′0 ∈T0(c) be the initial trace satisfying,
(1) (∀zr 6= xi . ρ(τ0, zr) = ρ(τ′0, zr)) and
(2) 〈c1;c2,τ0〉→∗ 〈[skip]l ,τ0++τ〉 and
(3) 〈c1;c2,τ′0〉→∗ 〈[skip]l ,τ′0++τ′〉 and
(4) Diffseq(τ,τ′, y j) 6= ;.
By the Evaluation rules for c1;c2, we have the following two concrete evaluations for (2) and (3):
(exe1) 〈c1;c2,τ0〉→∗ 〈c2,τ0++τ1〉→∗ 〈[skip]l ,τ0++τ1++τ2〉
(exe2) 〈c1;c2,τ′0〉→∗ 〈c2,τ′0++τ′1〉→∗ 〈[skip]l ,τ′0++τ′1++τ′2〉
where τ= τ1++τ2 and τ′ = τ′1++τ′2. Then, we have two following sub-cases,

sub-case: Diffseq(τ1,τ′1, y j) 6= ;
Then, by (exe1), (exe2) and the determinism of the program evaluation, we have the two following
evaluations:
(ih1-2) 〈c1;c2,τ0〉→∗ 〈[skip]l ,τ0++τ1〉;
(ih1-3) 〈c1;c2,τ′0〉→∗ 〈[skip]l ,τ′0++τ′1〉.
Then, by (1), (ih1-2), (ih1-3) and the sub-case condition, according to the may-dependency in Defini-
tion 16, we know

DEP(xi , y j ,τ1,τ′1,τ0,c1)

By induction hypothesis, we have
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc1 . n ≥ 0∧flowsTo(xi , zr1

1 ,c1)∧·· ·∧flowsTo(zrn
n , y j ,c1)

Then, by the flowsTo in Definition 24, we have
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

This case is proved.

52

sub-case: Diffseq(τ1,τ′1, y j) =;
By (4), we know
(ih2-4) Diffseq(τ2,τ′2, y j) 6= ;.
There are two cases,

subsub-case: (∀zr ∈L . ρ(τ1, zr) = ρ(τ′1, zr))
Let τi h0 = τ0++τ1 and τ′i h0 = τ′0++τ′1, we know the following by (1),
(ih2-1) (∀zr 6= xi . ρ(τ0++τ1, zr) = ρ(τ′0++τ1, zr))
By (exe1), (exe2) and the determinism of the program evaluation, we have the two following evalua-
tions:
(ih2-2) 〈c2,τi h0〉→∗ 〈[skip]l ,τi h0++τ2〉;
(ih2-3) 〈c2,τ′i h0〉→∗ 〈[skip]l ,τ′i h0++τ′2〉.
Then, by (ih2-1), (ih2-2), (ih2-3) and the (ih2-4), according to the may-dependency in Definition 16,
we know

DEP(xi , y j ,τ2,τ′2,τi h0,c2)

By induction hypothesis, we have
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc2 . n ≥ 0∧flowsTo(xi , zr1

1 ,c2)∧·· ·∧flowsTo(zrn
n , y j ,c2)

Then, by the flowsTo in Definition 24, we have
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

This case is proved.

subsub-case: ¬(∀zr ∈L . ρ(τ1, zr) = ρ(τ′1, zr))
According to the Definition 14, since Diffseq(τ2,τ′2, y j) 6= ;, there are two cases,
|seq(τ2, y j)| = |seq(τ′2, y j)|
|seq(τ2, y j)| 6= |seq(τ′2, y j)|
subsubsub-case: |seq(τ2, y j)| = |seq(τ′2, y j)|
, According to the Definition 13, and Diff Value Dependency Inversion LemmaD.6 we know there exist
two events (y, j , v1,α) ∈ τ2 and (y, j , v ′

1,α′) ∈ τ′2.
Then we have the following two execution instances

〈c2,τ0++τ1〉→∗ 〈[y ← e/query(ψ)] j ,τ0++τ1++τ1
2〉→∗ 〈skip,τ0++τ1++τ1

2 :: (y, j , v1,α)++τ2
2〉 (2)

〈c2,τ′0++τ′1〉→∗ 〈[y ← e/query(ψ)] j ,τ′0++τ′1++τ′12 〉→∗ 〈skip,τ′0++τ′1++τ′12 :: (y, j , v ′
1,α′)++τ′22 〉, (3)

where e2/ψ2 is the expression of the assignment command associated to the events (y, j , v1,α) and
(y, j , v ′

1,α′) by the Inversion Lemma. D.4.
Let LVDiff be the set of all the variables zr on τ′1++τ′12 and τ1++τ1

2 satisfying ρ(τ1++τ1
2, zr) 6= ρ(τ′1++τ′12 , zr).

Then, by the Diffseq in Definition 14, we know for every zr ∈ LVDiff, Diffseq(τ1++τ1
2,τ′1++τ′12 , zr) 6= ;.

Then we know the following for every zr ∈ LVDiff,
(ih3-4) ∀zr ∈ LVDiff . Diffseq(τ,τ′, zr) 6= ;.
Then, by (1), (ih1-2), (ih1-3), and (ih3-4), according to the may-dependency in Definition 16, we know
for every zr ∈ LVDiff,

DEP(xi , zr ,τ,τ′,τ0,c1)

By induction hypothesis, and the flowsTo in Definition 24, we have
(cld-1) ∃n ∈N, w l1r

1r , · · · , w lnr
1r ∈ LVc . n ≥ 0∧flowsTo(xi , w l1r

1r ,c)∧·· ·∧flowsTo(w lnr
nr , zr ,c).

By the inversion Lemma D.2, we also know ∃zr ∈ (LVDiff∪ {xi }) . z ∈ FV (e)∧ r = ι(τ0++τ1++τ1
2)z.

Then by the reaching definition Inversion Lemma D.5, we know zr ∈ RD(j ,c).
Then by flowsTo in Definition 24, we know ∃zr ∈ (LVDiff∪{xi }) . flowsTo(zr , y j ,c2), i.e., flowsTo(zr , y j ,c).

53

Together with (cld-1), we conclude
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c1)∧·· ·∧flowsTo(zrn
n , y j ,c).

This case is proved.

subsubsub-case: |seq(τ2, y j)| 6= |seq(τ′2, y j)|
According to the Definition 13, and Diff Control Dependency Inversion Lemma D.7, we know there
exist two testing events εb ∈ τ2 and ¬εb ∈ τ′2 satisfying
∀z ∈ FV (π1(εb)),∃r ∈L . flowsTo(zr , y j ,c2), i.e., flowsTo(zr , y j ,c).
In the same way as above by inversion on the testing event εb , we get similar execution instance as
Equation 2 and 3.
Repeating the same proof steps under the two executions, similarly, by the expression evaluation
inversion Lemma D.2, we know
∃zr ∈ (LVDiff∪ {xi }) . z ∈ FV (b)∧ r = ι(τ0++τ1++τ1

2)z.
Then by the reaching definition Inversion Lemma D.5, we know zr ∈ RD(j ,c).
Then by flowsTo in Definition 24, we know ∃zr ∈ (LVDiff∪{xi }) . flowsTo(zr , y j ,c2), i.e., flowsTo(zr , y j ,c).
Then together with (cld-1), we know
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c1)∧·· ·∧flowsTo(zrn
n , y j ,c).

This case is proved.

case: c = [x ← call (x,e1, . . . ,en)]l

By the evaluation rule, this case is proved in the same way as case: c = c1;c2

D.1 Inversion Lemmas and Helper Lemmas

The following are the inversion lemmas and helper lemmas used in the proof of Theorem ?? above,
showing the correspondence properties between the trace based semantics and the program analysis
results.

Arithmetic Inversions The Inversion Lemmas on expression evaluations.

Lemma D.1 (Expression Inversion). For all xi ∈ LV, and τ,τ′ ∈ T, and an expression e if ∀z j ∈
LV/{xi } . ρ(τ)z = ρ(τ′)z, and if

• e is an arithmetic expression a, and 〈τ, a〉 ⇓a v and 〈τ′, a〉 ⇓a v ′ with v ′ 6= v , then x is in the free
variables of a and i is the latest label for x in τ, i.e., x ∈V AR(a) and i = ι(τ)x.

• e is a boolean expression b, and 〈τ,b〉 ⇓b v and 〈τ′,b〉 ⇓b v ′ with v ′ 6= v , then x is in the free
variables of b and i is the latest label for x in τ, i.e., x ∈V AR(b) and i = ι(τ)x.

• e is a query expression ψ, and 〈τ,ψ〉 ⇓q α and 〈τ′,ψ〉 ⇓q α
′ with α 6=q α

′, then x is in the free
variables of ψ and i is the latest label for x in τ, i.e., x ∈V AR(ψ) and i = ι(τ)x.

Proof Summary:
To show x ∈V AR(a), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if x ∉V AR(a).
To show i = ι(τ), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if j = ι(τ)x and i 6= j .

Proof. Take two arbitrary traces τ,τ′ ∈T, and an expression e satisfying ∀z j ∈ LV/{xi } . ρ(τ)z = ρ(τ′)z,
we have the following three cases.

54

case: e is an arithmetic expression a
We have 〈τ,b〉 ⇓b v and 〈τ′,b〉 ⇓b v ′ with v ′ 6= v from the lemma hypothesis.
To show x ∈V AR(ψ) and i = ι(τ)x:
Assuming x ∉V AR(a), since ∀z j ∈ LV/{xi } . ρ(τ)z = ρ(τ′)z, we know v = v ′, which is contradicted to
v ′ 6= v .
Then we know x ∈V AR(ψ).
Assuming j = ι(τ)x ∧ i 6= j , by ∀z j ∈ LV/{xi } . ρ(τ)z = ρ(τ′)z, we know ρ(τ)x = ρ(τ′)x, i.e.,
∀z j ∈ LV . ρ(τ)z = ρ(τ′)z.
Then by the determination of the evaluation, we know v = v ′, which is contradicted to v ′ 6= v .
Then we know i = ι(τ)x.

case: e is a boolean expression b
This case is proved trivially in the same way as the case of the arithmetic expression.

case: e is a query expression ψ

This case is proved trivially in the same way as the case of the arithmetic expression.

Lemma D.2 (Expression Inversion Generalization). For all subset of the labelled variables LVDiff ⊂
LV and an expression e, if

• e is an arithmetic expression a, and for all z j ∈ LV\LVDiff there exist τ,τ′ ∈T, v, v ′ such that
ρ(τ)z = ρ(τ′)z, 〈τ, a〉 ⇓a v and 〈τ′, a〉 ⇓a v ′ with v 6= v ′, then ∃xi ∈ LVDiff such that x ∈ FV (a)
and i = ι(τ)x.

∀LVDiff ⊂ LV, a .
∀z j ∈ LV\LVDiff . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v 6= v ′

=⇒ ∃xi ∈ LVDiff . x ∈ FV (a)∧ i = ι(τ)x

• e is a boolean expression b, and for all z j ∈ LV \LVDiff there exist τ,τ′ ∈ T, v, v ′ such that
ρ(τ)z = ρ(τ′)z, 〈τ,b〉 ⇓b v and 〈τ′,b〉 ⇓b v ′ with v 6= v ′, then ∃xi ∈ LVDiff such that x ∈ FV (b)
and i = ι(τ)x.

∀LVDiff ⊂ LV, a .
∀z j ∈ LV\LVDiff . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v 6= v ′

=⇒ ∃xi ∈ LVDiff . x ∈ FV (b)∧ i = ι(τ)x

• e is a query expression ψ, and for all z j ∈ LV \ LVDiff there exist τ,τ′ ∈ T,α,α′ such that
ρ(τ)z = ρ(τ′)z, 〈τ,ψ〉 ⇓q α and 〈τ′,ψ〉 ⇓q α

′ with α 6=α′, then ∃xi ∈ LVDiff such that x ∈ FV (ψ)
and i = ι(τ)x.

∀LVDiff ⊂ LV, a .
∀z j ∈ LV\LVDiff . ∃τ,τ′ ∈T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α

′∧α 6=α′

=⇒ ∃xi ∈ LVDiff . x ∈ FV (ψ)∧ i = ι(τ)x

Proof. Proof by showing contradiction and Applying Lemma D.1.

Lemma D.3 (Expression Inversion Generalization-II). For all subset of the labelled variables Diff⊂
LV, and xi ∈ (LV\Diff), and an expression e, if

55

• e is an arithmetic expression a, and for all z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ such that ρ(τ)z = ρ(τ′)z,
and 〈τ, a〉 ⇓a v , and 〈τ′, a〉 ⇓a v ′ with v = v ′; and for all z j ∈ LV/(Diff∪ {xi }) there exist
τ,τ′ ∈ T, v, v ′ such that ρ(τ)z = ρ(τ′)z, and 〈τ, a〉 ⇓a v , and 〈τ′, a〉 ⇓a v ′ with v 6= v ′, then
x ∈V AR(a) and i = ι(τ)x.

∀Diff⊂ LV, xi ∈ (LV\Diff), a .
∀z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′

=⇒ ∀z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v 6= v ′

=⇒ x ∈V AR(a)∧ i = ι(τ)x

• e is a boolean expression b, and for all z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ such that ρ(τ)z = ρ(τ′)z ∧
〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v = v ′; and for all z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈ T, v, v ′ . ρ(τ)z =
ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v 6= v ′ then x ∈V AR(b)∧ i = ι(τ)x

∀Diff⊂ LV, xi ∈ (LV\Diff),b .
∀z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v = v ′

=⇒ ∀z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v 6= v ′

=⇒ x ∈V AR(b)∧ i = ι(τ)x

• e is a query expression ψ, and for all Diff ⊂ LV, xi ∈ (LV \Diff),ψ such that for all z j ∈
LV \ Diff,τ,τ′ ∈ T,α,α′ . ρ(τ)z = ρ(τ′)z ∧ 〈τ,ψ〉 ⇓q α∧ 〈τ′,ψ〉 ⇓q α′ ∧α =q α′; and for all
z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈ T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α

′∧α 6=q α
′,

then x ∈V AR(ψ)∧ i = ι(τ)x.

∀Diff⊂ LV, xi ∈ (LV\Diff),ψ .
∀z j ∈ LV\Diff,τ,τ′ ∈T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α

′∧α=q α
′

=⇒ ∀z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α
′∧α 6=q α

′

=⇒ x ∈V AR(ψ)∧ i = ι(τ)x

Proof Summary:
To show x ∈V AR(a), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if x ∉V AR(a).
To show i = ι(τ), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if j = ι(τ)x and i 6= j .

Proof. Taking an arbitrary expression e, we have the following three cases.

case: e is an arithmetic expression a
Taking an arbitrary set of labelled variables Diff⊂ LV, xi ∈ (LV\Diff) satisfies:
∀z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′ (1)
and ∀z j ∈ LV\ (Diff∪ {xi }) . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v 6= v ′ (2),
Let τ,τ′ ∈T, v, v ′ be the two traces and values satisfies hypothesis (2).
To show: x ∈V AR(a)∧ i = ι(τ)x:
Assuming x ∉V AR(a), we know from the Inversion Lemma D.1 of the arithmetic expression case,
∀z j ∈ LV\ {xi },τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′.
Then with the hypothesis (1), we know:
∀z j ∈ LV\ (Diff∪ {xi }),τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′

This is contradicted to the hypothesis (2).
Then we know x ∈V AR(e).
Assuming j = ι(τ)x∧ i 6= j , by hypothesis (2) where ∀z j ∈ LV\(Diff∪{xi }) . ρ(τ)z = ρ(τ′)z, we know

56

ρ(τ)x = ρ(τ′)x, i.e.,
∀z j ∈ LV\ (Diff) . ρ(τ)z = ρ(τ′)z.
Then we have v ′ = v by hypothesis (1), which is contradicted to v ′ 6= v .
Then we know i = ι(τ)x.

case: e is a boolean expression b
This case is proved trivially in the same way as the case of the arithmetic expression.

case: e is a query expression ψ

This case is proved trivially in the same way as the case of the arithmetic expression.

Lemma D.4 (Event Inversion). For all c ∈ C,τ0 ∈ T,ε ∈ Esuch that 〈c,τ0〉 →∗ 〈skip,τ0++τ1〉, and
ε ∈e τ1, if

• ε ∈Easn, then either

– there exists τ′1 ∈T,c ′ ∈C,e such that

〈c,τ0〉→∗ 〈[x ← e]l ;c ′,τ0++τ′〉→assn 〈c ′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

– or there exists τ′1 ∈T,c ′ ∈C,ψ such that

〈c,τ0〉→∗ 〈[x ← query(ψ)]l ;c ′,τ0++τ′1〉→quer y 〈c ′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

• ε ∈Etest then either

– there exists τ′1 ∈T,c ′,ct ,c f ,c ′′ ∈C,b such that

〈c,τ0〉→∗ 〈 if ([b]l ,ct ,c f);c ′,τ0++τ′1〉→i f −b 〈c ′′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

– or there exists τ′1 ∈T,c ′,cw ,c ′′ ∈C,b such that

〈c,τ0〉→∗ 〈 while ([b]l ,cw);c ′,τ0++τ′1〉→whi le−b 〈c ′′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

Proof Summary: trivially by induction on c and enumerate all operational semantic rules.

Proof. Take arbitrary τ0 ∈T, by induction on c, we have following cases:

case: c = [x ← e]l

By the evaluation rule assn, we have 〈[x ← a]l ,τ〉 −→ 〈skip,τ++[(x, l , v)]〉.
Then we know τ1 = [(x, l , v)] and there is only 1 event (x, l , v) ∈ τ1.
Then we have τ′1 = [] and c ′ = skip satisfying
〈c,τ0〉→∗ 〈[x ← e]l ;c ′,τ0++τ′〉→assn 〈c ′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉.
This case is proved.

case: c = [x ← query(ψ)]l

This case is proved trivially in the same way as case: c = [x ← e]l .

case: c = cs1;cs2

This case is proved trivially by the induction hypothesis on cs1 and cs2 separately, we have this case
proved.

57

case: while [b]l do c
If the rule applied to is while-t, we have:
〈 while [b]l do cw ,τ〉 −→ 〈cw ; while [b]l do cw ,τ++[(b, l ,true)]〉 ∗−→〈skip,τ++τ1〉,
(b, l ,true) ∈ εtest and (b, l ,true) ∈ τ1.
Let τ′ = [], c ′ = skip and c ′′ = cw ; while [b]l do cw , we know that they satisfy
〈c,τ0〉→∗ 〈 while ([b]l ,cw);c ′,τ0++τ′1〉→whi le−b 〈c ′′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉
This case is proved.
If the rule applied to is while-f, we have
〈 while [b]l do cw ,τ〉 −→while-f 〈skip,τ++[((b, l ,false))]〉, (b, l ,true) ∈ εtest, and (b, l ,true) ∈ τ1.
Let τ′ = [], c ′ = skip and c ′′ = skip, we know that they satisfy
〈c,τ0〉→∗ 〈 while ([b]l ,cw);c ′,τ0++τ′1〉→while-f 〈c ′′,τ0++τ′1++[(b, l ,false)]〉→∗ 〈skip,τ0++τ1〉
This case is proved.

case: if ([b]l ,ct ,c f)
This case is proved in the same way as case: c = [x ← query(ψ)]l .

Lemma D.5 (Reachable Varibale Inversion). For all c ∈ Cτ,τ′ ∈ T, if 〈c,τ〉 −→∗ 〈c ′,τ′〉, and for all
x l ∈ LVc such that ι(τ′)x = l , then x l ∈ RD(absinit(c),c).

∀c ∈C,τ,τ′ ∈T . 〈c,τ〉 −→∗ 〈c ′,τ′〉 =⇒ ∀x l ∈ LVc . ι(τ′)x = l =⇒ x l ∈ RD(absinit(c),c)

Proof Summary: If a variable with the label which is the latest one in the trace, Then by the
environment definition, the value associated to this labelled variable is read from the trace.
Then this labelled variable must be reachable at the point of entryc ′ , i.e., x l ∈ RD(absinit(c),c).

Proof. Take arbitrary c ∈ C,τ,τ′ ∈ T satisfying 〈c,τ〉 −→∗ 〈c ′,τ′〉, and an arbitrary x l ∈ LVc satisfying
ι(τ′)x = l .
By definition of ι, we know τ′ has the form τ′a++[(x, l , v)]++τ′b for some τ′a ,τ′b ∈T and v .
And the variable x doesn’t show up in all the events in τ′b .
Then, by the environment definition, we know: ρ(τ′)x = v , i.e., x l is reachable at the point of
absinit(c).
By the i n(l) operator define in Section 4.3.2, we know x l is in the i n(absinit(c) for prpgram c.
Since RD(absinit(c),c) is a stabilized closure of i n(l) for c, we know x l ∈ RD(absinit(c),c).
This lemma is proved.

Events and Dependency Inversions The Inversion Lemmas on may-dependency relation, trace and
event.

Lemma D.6 (Diff Value Dependency Inversion).

∀c ∈C,τ1,τ2 ∈T, xi ∈ LV(c) . Diffseq(τ1,τ2, xi) 6= ;∧|seq(τ1, xi)| = |seq(τ2, xi)|
=⇒ ∃ε1 = (x, i ,_,_) ∈ τ1,ε2 = (x, i ,_,_) ∈ τ2 . Diff(ε1,ε2)

Proof Summary, by unfolding the Difference Sequence Definition 14 and Value Sequence Defini-
tion 13.

Proof. Take arbitrary c ∈C, let τ1,τ2 ∈T, xi ∈ LV(c) be the traces and variable satisfying (¦) Diffseq(τ1,τ2, xi) 6=
;∧ (?) |seq(τ1, xi)| = |seq(τ2, xi)|.
Then by Definition 14 and the assumptions (¦) and (?), we know |seq(τ1, xi)| = |seq(τ2, xi)| ≥ 1.

58

By seq in Definition 13, we know there is at least an event (x, i ,_,_) ∈ τ1 and (x, i ,_,_) ∈ τ2 in order to
have |seq(τ1, xi)| = |seq(τ2, xi)| ≥ 1.
In order to show Diff(ε1,ε2), it is sufficient to a contradiction by assuming
(hc) ∀ε1 = (x, i ,_,_) ∈ τ1,ε2 = (x, i ,_,_) ∈ τ2 . ¬Diff(ε1,ε2)
By seq in Definition 13 and (hc), we know every value v1 in seq(τ1, xi) and v2 at the same index
position of seq(τ2, xi) are equivalent to each other.
Then we know Diffseq(τ1,τ2, xi) 6= ;. This is contradicted to the hypothesis.
Then we know (hc) is false and this Lemma is proved.

Lemma D.7 (Diff Control Dependency Inversion).

∀c ∈C,τ0 ∈T0(c),τ1,τ2 ∈T, xi , y j ∈ LV(c) . DEP(xi , y j ,τ1,τ2,τ0,c)∧|seq(τ1, y j)| 6= |seq(τ2, y j)|
=⇒ ∃εb = (b, i , v,•) ∈ τ1 . ¬εb ∈ τ2 ∧∀z ∈ FV (b),∃l ∈L . flowsTo(z l , y j ,c)

Proof Summary:
Proving by using the Inversion Lemmas D.1, D.2, D.4, and D.5, and the May-Dependency definition.

Proof. Take arbitrary c ∈C, let τ0 ∈T0(c),τ1,τ2 ∈T, xi , y j ∈ LV(c) be the traces and variables satisfying
(¦) DEP(xi , y j ,τ1,τ2,τ0,c)∧ (?) |seq(τ1, y j)| 6= |seq(τ2, y j)|.
To show (c1) ∃εb = (b, i , v,•) ∈ τ1 . ¬εb ∈ τ2 ∧ (c2) ∀z ∈ FV (b),∃l ∈L . flowsTo(z l , y j ,c)
Splitting the conjunction, there are two sub conclusions need to be proved:
Subproof of (c1) ∃∃∃εb === (b, i , v,•••) ∈∈∈τ1 . ¬¬¬εb ∈∈∈τ2:
To show (c1) it is sufficient to show a contradiction by assuming
(hc) ¬(∃εb = (b, i , v,•) ∈ τ1 . ¬εb ∈ τ2).
By (hc), we know there are two cases
(1) ∀ε ∈ τ1 . ε ∈Easn.
(2) ∀εb = (b, i , v,•) ∈ τ1 . εb ∉ τ2.

sub-case: (1) ∀ε ∈ τ1 . ε ∈Easn
By Event Inversion Lemma D.4 on every ε ∈ τ1, we know program c has the following form
c = [

skip
]∗;

[
x1 ← e1/query(ψ1)

]l1 ;
[
skip

]∗; . . . ;
[
skip

]∗, i.e., c consists of only assignment and
skip commands.
Then by the May-Dependency in Definition 16 and determinism of evaluation, we know ∀τ′0 ∈T0(c)

〈c,τ0〉→∗ 〈[skip]l ,τ0++τ1〉∧〈c,τ′0〉→∗ 〈[skip]l ,τ′0++τ2〉 =⇒ |seq(τ1, y j)| = |seq(τ2, y j)|.
This is contradicted to the condition (?) |seq(τ1, y j)| 6= |seq(τ2, y j)|.
sub-case: (2) ∀εb = (b, i , v,•) ∈ τ1 . ¬εb ∉ τ2

By Event Inversion Lemma D.4 on every ε ∈ τ1,
Since ¬εb ∉ τ2, by the determinism of evaluation, we know the two executions are executing the same
program.
In the same way by the May-Dependency in Definition 16 and we know ∀τ′0 ∈T0(c)

〈c,τ0〉→∗ 〈[skip]l ,τ0++τ1〉∧〈c,τ′0〉→∗ 〈[skip]l ,τ′0++τ2〉 =⇒ |seq(τ1, y j)| = |seq(τ2, y j)|.
This is contradicted to the condition (?) |seq(τ1, y j)| 6= |seq(τ2, y j)|.
Then we have (hc) is false, and (c1) is proved.
Let εb = (b, i , v,•) ∈ τ1 be the testing event such that ¬εb ∈ τ2.
By the LV(c) in Definition 5, we know ∀z ∈ FV (b), either z is input variable, we have zin ∈ LV(c), or
z is assigned in c, we have ∃r ∈N . zr ∈ LV(c).
Let r be the label for every z ∈ FV (b), we prove the second sub-conclusion (c2) as follows.
Subproof of ∀∀∀z ∈∈∈ F V (b),∃∃∃l ∈∈∈L . flowsTo(z l , y j , c)

59

By (¦) and (?), we know there exists at least an event εy = (y, j ,_,_) such that εy ∈ τ1 or εy ∈ τ2.
Without loss of generalization, we assume εy ∈ τ1 (The case of εy ∉ τ1 and εy ∈ τ2 will be proved as a
symmetric case of this assumption).
Without loss of generalization, let εb be the testing event, and τ1

1,τ2
1,τ3

1,τ1
2,τ2

2 ∈T be traces such that
τ1 = τ1

1++[εb]++τ2
1++[εy]++τ3

1, and τ2 = τ1
2++[¬εb]++τ2

2.
Then by Inversion Lemma D.4 on εy , and εb , we have the following instance of the first execution in
Definition 16,

〈c,τ0〉→∗ 〈 if ([b]lb ,ct ,c f)/ while [b]lb do cw ;c ′3,τ0++τ1
1〉

→if-b / while-b 〈(ct ;c ′/c f ;c ′)/(cw ; while [b]lb do cw ;c ′/[skip];c ′),τ0++τ1
1++[εb]〉

→∗ 〈[y ← e2/query(ψ2)] j ;c ′′,τ0++τ1
1[εb]++τ2

1〉
→assn/query 〈c ′′,τ0++τ1

1[εb]++τ2
1++[εy]〉→∗ 〈skip,τ0++τ1

1[εb]++τ2
1++[εy]++τ3

1〉
(4)

, where if ([b]lb ,ct ,c f)/ while [b]lb do cw is the conditional command of the assignment commands
associated to the εb by applying Inversion Lemma D.4 on εb .
The notation (ct ;c ′/c f ;c ′)/(cw ; while [b]lb do cw ;c ′/[skip];c ′) represents:
In case of if ([b]lb ,ct ,c f), if π3(εb) = true, we have the evaluation:

〈 if ([b]lb ,ct ,c f);c ′,τ1++[ε1]++τ〉→if-b 〈ct ;c ′τ1++[ε1]++τ++[εb]〉

The same for case of if ([b]lb ,ct ,c f) with π3(εb) = false, and case of while [b]lb do cw with
π3(εb) = true and π3(εb) = false.
By applying Inversion Lemma D.4 on εb , and the command label consistency, we also have the instance
of second execution from Definition 16 as follows,

〈c,τ′0〉→∗ 〈 if ([b]lb ,ct ,c f)/ while [b]lb do cw ;c ′3,τ′0++τ1
2〉

→if-b / while-b 〈(ct ;c ′/c f ;c ′)/(cw ; while [b]lb do cw ;c ′/[skip];c ′),τ′0++τ1
2++[¬εb]〉

→∗ 〈[skip]l ′
τ′0++τ1

2++[¬εb]++τ2
2〉

(5)

Then for every z ∈ FV (b) with label r such that zr ∈ LV(c), to show flowsTo(zr , y j ,c), by Defini-
tion 24, it is sufficient to show:
in the case of while [b]lb do cw , y j ∈ LV(cw) ;
in the case of if ([b]lb ,ct ,c f), y j ∈ LV(ct) or y j ∈ LV(c f) .

sub-case: if ([b]lb ,ct ,c f)∧π3(εb) = true

In this case, we have the following execution instances for executions i n Equation 4 and 4.

〈c,τ0〉→∗ 〈 if ([b]lb ,ct ,c f);c ′,τ0++τ1
1〉→if-b 〈ct ;c ′,τ0++τ1

1++[εb]〉→∗ 〈[y ← e2/query(ψ2)] j ;c ′′,τ0++τ1
1++[εb]++τ2

1〉
→assn/query 〈c ′′,τ0++τ1

1++[εb]++τ2
1++[εy]〉→∗ 〈skip,τ0++τ1

1++[εb]++τ2
1++[εy]++τ3

1〉
〈c,τ′0〉→∗ 〈 if ([b]lb ,ct ,c f);c ′,τ′0++τ1

2〉→if-b 〈c f ;c ′,τ′0++τ1
2++[¬εb]〉→∗ 〈[skip]l ′

τ′0++τ1
2++[¬εb]++τ2

2〉

Then, we know τ2
1++[εy]++τ3

1 corresponds to evaluation of ct ;c ′ and τ2
2 corresponds to evaluation of

c f ;c ′ and εy ∉ τ2
2.

If εy generated from evaluation of ct , we know y j ∈ LV(ct) and this case is proved.
If εy generated from evaluation of c ′, since εy ∉ τ2

2 and τ2
2 also contains evaluation of c ′.

Then there must be another if or while command in c ′ such that εy is generated in the first execution
but isn’t evaluated in the second one.
In that case, there is another ε′b ∈ τ2

1 and ¬ε′b ∈ τ2
2 satisfying the same condition as εb .

60

Then we can always choose the εb be this ε′b and choose τ1
1,τ2

1,τ3
1,τ1

2,τ2
2 ∈T be traces such that

τ1 = τ1
1++[εb]++τ2

1++[εy]++τ3
1, and τ2 = τ1

2++[¬εb]++τ2
2.

and TL(τ2
1++[εy])∩TL(τ2

2) =;.
Then, since TL(τ2

1++[εy])∩TL(τ2
2) =;, we know TL(τ2

1++[εy]) doesn’t contain any label of the program
c ′.
Then we know εy isn’t generated from evaluating c ′, i.e., it is generated by only executing ct .
Then we know y j ∈ LV(ct).
This case is proved.
The sub-cases: if ([b]lb ,ct ,c f)∧π3(εb) = false, while [b]lb do cw∧π3(εb) = true, and while [b]lb do cw∧
π3(εb) = true are proved in the same way.
This Lemma is proved.

Lemma D.8 (While Loop Inversion). For every τ,τ′ ∈T,c,c1,c2 ∈C if 〈c,τ〉→∗ 〈c1;c2,τ′〉 and c1 ∈c c2,
then there must exist a while command in c2 and c1 must shows up in the body of that while

command, i.e., ∃l ∈N,b ∈B,cw ∈C . (while [b]l do cw) ∈c c2 ∧ c1 ∈c cw .

∀τ,τ′ ∈T,c,c1,c2 ∈C .
〈c,τ〉→∗ 〈c1;c2,τ′〉 =⇒ c1 ∈c c2 =⇒ ∃l ∈N,b ∈B,cw ∈C . (while [b]l do cw) ∈c c2 ∧ c1 ∈c cw

Proof Summary: trivially by induction on c and enumerate all operational semantic rules.

Proof. Take arbitrary τ ∈T, by induction on c, we have following cases:

case: c = [x ← e]l

By the evaluation rule assn, we have 〈[x ← a]l ,τ〉 −→ 〈skip,τ++[(x, l , v)]〉.
Since there doesn’t exist c1,c2 ∈C satisfying skip= c1;c2, this theorem is vacuously true.

case: c = [x ← query(ψ)]l

By the evaluation rule query, we have 〈[x ← query(ψ)]l ,τ〉 −→ 〈skip,τ++[(x, l ,α, v)]〉.
Since there doesn’t exist c1,c2 ∈C satisfying skip= c1;c2, this theorem is vacuously true.

case: c = if ([b]l ,c1,c2)
By the evaluation rule query and if-f, and the label consistency, we know:
for all possible ct1 and ct2 such that ct has the form ct = ct1;ct2;
all possible c f 1 and c f 2 such that c f has the form c f = c f 1;c f 2,
ct1 ∉ ct1 and c f 1 ∉ c f 2.
Then this theorem is vacuously true.

case: c = cs1;cs2

By label consistency, we know for every c ′1 ∈c cs1, c ′1 ∉ cs2.
Then by the induction hypothesis on cs1 and cs2 separately, we have this case proved.

case: while [b]l do c
By rule while-t, we have:

〈 while [b]l do cw ,τ〉 −→ 〈cw ; while [b]l do cw ,skip),τ++[ε]〉

If cw is a sequence command, let c1 = cw1 be the any possible command in this sequence, for all
possible cw1 and cw2 such that cw has the form cw = cw1;cw2.
Then we have c2 = cw2; while [b]l do cw ,skip) and c1 ∈c c2.
And we also have the existence of l = lb ,b and cw , and while [b]l do cw ∈c c2 and c1 ∈ cw .
If cw isn’t a sequence command, let c1 = cw , then we have c2 = while [b]l do cw ,skip) and c1 ∈c c2.

61

And we also have the existence of l = lb ,b and cw , and while [b]l do cw ∈c c2 and c1 ∈ cw .
This case is proved.
By the evaluation rule while-f, we have 〈 while [b]l , do cw ,τ〉 −→ 〈[skip]l ,τ++[((b, l ,false))]〉.
Since there doesn’t exist c1,c2 ∈C satisfying skip= c1;c2, this theorem is vacuously true.

Lemma D.9 (Only skip Command doesn’t Produce Event). . For all trace τ ∈ T, and c,c ′ ∈ C,
〈c,τ〉→ 〈c ′,τ〉 if and only if c = [skip];c ′.

∀τ ∈T,c,c ′ ∈C . 〈c,τ〉→ 〈c ′,τ〉⇔ c = [skip];c ′

Proof. Proved trivially by induction on c and enumerate all operational semantic rules.

62

E Soundness of Reachability Bounds Estimation

Theorem E.1 (Soundness of the Reachability Bounds Estimation). Given a program c with its program-
based dependency graph Gprog(c) = (Vprog,Eprog), we have:

∀c ∈C . Gprog(c) = (Vprog,Eprog)∧Gtrace(c) = (Vtrace,Etrace)
=⇒ ∀(x l , wt) ∈ Vtrace, (x l , wp) ∈ Vprog,τ0 ∈T0(c),τ′ ∈T, v ∈N .
〈c,τ0〉→∗ 〈skip,τ0++τ′〉∧〈w p ,τ0〉 ⇓e v =⇒ wt (τ) ≤ v

Proof. Taking an arbitrary a program c with its program-based dependency graph Gprog(c) = (Vprog,Eprog),
and an arbitrary pair of labeled variable and weights (x l , w) ∈ Vprog, and arbitrary τ,τ′ ∈T, v ∈N satis-
fying
〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈τ, w〉 ⇓e v
By Definition of Vprog in Gprog(c), we know w = absW(l) = max{Tclosure(

α

ε)| αε= (l ,_,_)}.
By Lemma E.1, there exists an abstract event in abstrace(c) of form (

α

ε) = (l ,_,_), corresponding to
the assignment command associated to labeled variable x l .
Let (

α

ε) = (l ,dc, l ′) ∈ abstrace(c) be this event for some dc and l ′ such that (
α

ε) = (l ,dc, l ′) ∈ abstrace(c),
by the last step of phase 2, we know Wprog(x l), Tclosure(

α

ε). Then, it is sufficient to show:

∀v ∈N . 〈Tclosure(
α

ε),τ〉 ⇓e cnt(τ′, l) ≤ vTclosure(
α

ε)

By definition of Tclosure(
α

ε):

locb(
α

ε) locb(
α

ε) ∈ SMBCST

Incr (locb(
α

ε))+∑
{Tclosure(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))} locb(
α

ε) ∉ SMBCST

case: locb(
α

ε) ∈ SMBCST

Proved by the soundness of Local bound in Lemma E.2.

case: locb(
α

ε) ∉ SMBCST

To show:

max
{
cnt(τ′)l

∣∣ ∀τ ∈T . 〈c,τ〉→∗ 〈skip,τ++τ′〉}
≤ Incr (locb(

α

ε))+∑
{Tclosure(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))}

Taking an arbitrary initial trace τ0 ∈ T, executing c with τ0, let τ be the trace after evaluation, i.e.,
〈c,τ0〉→∗ 〈skip,τ〉, it is sufficient to show:

cnt(τ′)l ≤ Incr (locb(
α

ε))+∑
{Tclosure(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))}

By the soundness of the (1) Transition Bound and (2) Variable Bound Invariant in [2] Theorem 1, This
case is proved.

Lemma E.1 (Soundness of the Abstract Execution Trace). Given a program c, we have:

∀τ0,τ ∈T,ε= (_, l ,_) ∈E . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃ α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

63

Proof. Taking arbitrary τ0 ∈T, and an arbitrary event ε= (_, l ,_) ∈E, it is sufficient to show:

∀τ ∈T . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃ α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

By induction on program c, we have the following cases:

case: c = [x ← e]l ′

By the evaluation rule assn, we have 〈[x ← a]l ′ ,τ〉 −→ 〈skip,τ++[(x, l ′, v)]〉, for some v ∈ N and τ =
[(x, l ′, v)].
There are 2 cases, where l ′ = l and l ′ 6= l .
In case of l ′ 6= l , we know ε 6∈e τ, then this Lemma is vacuously true.
In case of l ′ = l , by the abstract Execution Trace computation, we know abstrace(c) = abstrace′([x :=
e]l ;

[
skip

]le) = {(l ,absexpr(e), le)}

Then we have
α

ε= (l ,absexpr(e), le) and
α

ε∈ abstrace(c).
This case is proved.

case: c = [x ← query(ψ)]l ′

This case is proved in the same way as case: c = [x ← e]l .

case: while [b]lw do c
If the rule applied to is while-t, we have
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ0++[(b, l ,true)]〉.
Let τw ∈T satisfying following execution:
〈cw ,τ0++[(b, lw ,true)]〉 ∗−→〈skip,τ0++[(b, lw ,true)]++τw 〉
Then we have the following execution:
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ0++[(b, lw ,true)]〉 ∗−→〈 while [b]lw do cw ,τ0++[(b, lw ,true)]++τw 〉 ∗−→
〈skip,τ0++[(b, lw ,true)]++τw ++τ1〉 for some τ1 ∈T and τ= [(b, lw ,true)]++τw ++τ1.
Then we have 3 cases: (1) ε=e (b, lw ,true), (2) ε ∈ τw or (3) ε ∈ τ1.
In case of (1). ε=e (b, lw ,true), since abstrace(c) = abstrace′(c;

[
skip

]le) = {(l ,>,init(cw))}∪
·· · , we have

α

ε= (l ,>,init(cw)) and this case is proved.
In case of (2). ε ∈ τw , by induction hypothesis on cw with the execution 〈cw ,τ0++[(b, lw ,true)]〉 ∗−→
〈skip,τ0++[(b, lw ,true)]++τw 〉 and trace τw , we know there is an abstract event of the form

α

ε
′=

(l ,_,_) ∈ abstrace(cw) where abstrace(cw) = abstrace′(cw ;
[
skip

]le).
Let

α

ε
′= (l ,dc, l ′) for some dc and l ′ such that

α

ε∈ abstrace(c).
By definition of abstrace′, we have abstrace′(cw ;

[
skip

]le) = abstrace′(cw)∪{(l ′,dc, le)|(l ′,dc) ∈
absfinal(cw)}.
There are 2 subcases: (2.1)

α

ε
′∈ abstrace′(cw) or (2.2)

α

ε
′∈ {(l ′,dc, le)|(l ′,dc) ∈ absfinal(cw)}.

sub-case: (2.1)
Since abstrace(c) = abstrace′(cw)∪{(l ′,dc, lw)|(l ′,dc) ∈ absfinal(cw)}∪·· · , we know the abstract
event

α

ε
′∈ abstrace(c).

This case is proved.

sub-case: (2.2) α

ε
′∈ {(l ′,dc, le)|(l ′,dc) ∈ absfinal(cw)}

In this case, we know (l ,dc) ∈ absfinal(cw).
Since abstrace(c) = abstrace′(cw)∪{(l ′,dc, lw)|(l ′,dc) ∈ absfinal(cw)}∪·· · , we know (l ,dc, lw) ∈
{(l ′,dc, lw)|(l ′,dc) ∈ absfinal(cw)}, i.e., the abstract event (l ,dc, lw) ∈ abstrace(c) and (l ,dc, lw)
has the form (l ,_,_).
This case is proved.

64

In case of (3). ε ∈ τ1, we know either ε= (b, lw ,_), or ε ∈ τ′w where τ′w ∈T is the trace of executing cw

in an iteration.
Then this case is proved by repeating the proof in case (1) and case (2).
If the rule applied to is while-f, we have
〈 while [b]lw do cw ,τ0〉 −→while-f 〈skip,τ0++[(b, lw ,false)]〉, In this case, we have τ= [(b, lw ,false)]
and ε= (b, lw ,false) (o.w., ε 6∈e τ and this lemma is vacuously true) with l = lw .
By the abstract execution trace computation, abstrace(c) = {(l ,>,init(cw))} ∪ ·· · , we have

α

ε=
(l ,>,init(cw)) and

α

ε∈ abstrace(c).
This case is proved.

case: if ([b]l ,ct ,c f)
This case is proved in the same way as case: c = while [b]l do c.

case: c = cs1;cs2

By the induction hypothesis on cs1 and cs2 separately, and the same step as case (2). of case: c =
while [b]l do c, we have this case proved.

Lemma E.2 (Soundness of the Local Bound). Given a program c, we have:

∀ α

ε= (l ,dc, l ′) . max
{
cnt(τ′)l

∣∣ ∀τ ∈T . 〈c,τ〉→∗ 〈skip,τ++τ′〉}≤ locb(
α

ε)

Proof.

sub-case: l ∉ SCC (absG(c))
In this case, we know variable x l isn’t involved in the body of any while command.
Taking an arbitrary τ0 ∈T, let τ ∈T be of resulting trace of executing c with τ, i.e., 〈c,τ0〉→∗ 〈skip,τ〉,
we know the assignment command at line l associated with the abstract event

α

ε will be executed at
most once, i.e.,: cnt(τ)l ≤ 1
By locb definition, we know locb(

α

ε) = 1.
This case is proved.

sub-case: l ∈ SCC (absG(c))∧ α

ε∈ dec(x)
in this case, we know locb(

α

ε), x.

sub-case: l ∈ SCC (absG(c))∧ α

ε∉⋃
x∈V AR dec(x)∧ α

ε∉ SCC (absG(c)/dec(x))
in this case, we know locb(

α

ε), x.
In the two cases above, the soundness is discussed in [2] Section 4 of Paragraph Discussion on
Soundness in Page 25.

For every labeled variable in program c, x l ∈ LVc , there is a unique abstract event in program’s
abstract execution trace

α

ε∈ abstrace(c) of form (l ,_,_).

Lemma E.3 (Uniqueness of the Abstract Execution Trace). Given a program c, we have:

∀τ0,τ ∈T,ε= (_, l ,_,_) ∈Easn . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃!

α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

Proof. This is proved trivially by induction on the program c.

65

F Soundness of Edge Weight Estimation

Theorem F.1 (Soundness of the Edge Weights Estimation). Given a program c with its program-based
dependency graph Gprog(c) = (Vprog,Eprog), we have:

∀c ∈C . Gprog(c) = (Vprog,Eprog)∧Gtrace(c) = (Vtrace,Etrace)
=⇒ ∀(v1, w p , v2) ∈ Etrace, (v1, w t , v2) ∈ Eprog,τ0 ∈T0(c),τ′ ∈T, v ∈N .
〈c,τ0〉→∗ 〈skip,τ++τ′〉∧〈w p ,τ0〉 ⇓e v =⇒ wt (τ) ≤ v

Proof. Taking an arbitrary a program c with its program-based dependency graph Gprog(c) = (Vprog,Eprog),
and an arbitrary pair of labeled variable and weights (x l , w) ∈ Vprog, and arbitrary τ,τ′ ∈T, v ∈N satis-
fying
〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈τ, w〉 ⇓e v
By Definition of Wprog in Gprog(c), we know w = absW(l) = max{Tclosure(

α

ε)| αε= (l ,_,_)}.
By Lemma E.1, there exists an abstract event in abstrace(c) of form (

α

ε) = (l ,_,_), corresponding to
the assignment command associated to labeled variable x l .
Let (

α

ε) = (l ,dc, l ′) ∈ abstrace(c) be this event for some dc and l ′ such that (
α

ε) = (l ,dc, l ′) ∈ abstrace(c),
by the last step of phase 2, we know Wprog(x l), Tclosure(

α

ε). Then, it is sufficient to show:

∀v ∈N . 〈Tclosure(
α

ε),τ〉 ⇓e cnt(τ′, l) ≤ vTclosure(
α

ε)

By definition of Tclosure(
α

ε):

locb(
α

ε) locb(
α

ε) ∈ SMBCST

Incr (locb(
α

ε))+∑
{Tclosure(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))} locb(
α

ε) ∉ SMBCST

case: locb(
α

ε) ∈ SMBCST

Proved by the soundness of Local bound in Lemma E.2.

case: locb(
α

ε) ∉ SMBCST

To show:

max
{
cnt(τ′)l

∣∣ ∀τ ∈T . 〈c,τ〉→∗ 〈skip,τ++τ′〉}
≤ Incr (locb(

α

ε))+∑
{Tclosure(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))}

Taking an arbitrary initial trace τ0 ∈ T, executing c with τ0, let τ be the trace after evaluation, i.e.,
〈c,τ0〉→∗ 〈skip,τ〉, it is sufficient to show:

cnt(τ′)l ≤ Incr (locb(
α

ε))+∑
{Tclosure(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))}

By the soundness of the (1) Transition Bound and (2) Variable Bound Invariant in [2] Theorem 1, This
case is proved.

66

G Soundness of Adaptivity Computation Algorithm

Theorem G.1 (Soundness of AdaptSearch). For every program c, given its Program-Based Depen-
dency Graph Gprog,

AdaptSearch(Gprog) ≥ Aprog(Gprog).

proof Summary:
1. for every two vertices x, y with a walk kx,y from x to y on Gprog,
2 if they are on the same SCC,
2.1 Then this walk must also be in this SCC. (By the property that each SCC are single direct connected,
otherwise they are the same SCC)
2.2 By Lemma G.1, lenq of this walk is bound by the longest walk of this SCC.
2.3 The output of AdaptSearch(Gprog) is greater than longest walk of a single SCC.
3. if they are on different SCC.
3.1 Then this walk can be split into n,2 ≤ n sub-walks, and each sub-walk belongs to a different SCC.
(Also by the property of SCC)
3.2 By Lemma G.1, lenq of each sub-walk is bound by the longest walk of the SCC it belongs to.
3.3 By line: in algorithm, the output of AdaptSearch(Gprog) is greater than sum up the lenq of longest
walk in every SCC that each sub-walk belongs to.
4. Then we have AdaptSearch(Gprog(c)) ≥ Aprog(c).

Proof. Taking arbitrary program c ∈C, let Gprog(c) = (Vprog,Eprog,Wprog,Qprog) be its program based
dependency graph.
Taking an arbitrary walk kx,y ∈WK(Gprog), with vertices sequence (x, s1, · · · , y), it is sufficient to show:

lenq(kx,y) = len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤AdaptSearch(Gprog(c))

By line:3 of AdaptSearch(Gprog) algorithm defined in Algorithm 1, let GSCC1, · · · ,GSCCn be all the strong
connected components on Gprog with 0 ≤ n ≤ |V|, where each GSCCi = (Vi ,Ei ,Wi ,Qi),
By line:5-6 in Algorithm 1, let adaptscc[GSCCi] be the result of AdaptSearchscc(GSCCi) for each GSCCi .
There are 2 cases:

case: x, y on the same SCC
Let GSCC be this SCC where vertices x and y on, by Lemma G.1, we know

lenq(kx,y) ≤ max{lenq(k)|k ∈WK(GSCC)} ≤AdaptSearchscc (GSCC)

By line:15 and line:18 in AdaptSearch(Gprog) algorithm in Algorithm 1, let adapt be the output value,
we know AdaptSearch(Gprog(c)) = adapt≥ adapttmp ≥ adaptscc(SSC).
i.e.,

lenq(kx,y) ≤AdaptSearch(Gprog(c))

This case is proved.

case: x, y on different SSC
Let GSCCx ,GSCC1, · · · ,GSCCm ,GSCCy ,0 ≤ m be all the SCC this walk pass by, where each vertex in
(x, s1, · · · , sn , y) belongs to a single SCC number.
By the property of SCC, we know every 2 SCCs are single direct connected. Then we can divide this
walk into m +2 sub-walks:
kx = (x, s1, · · · , ssccx);

67

k1 = (ssccx , · · · , sscc1);
· · ·
ky = (ssccm , · · · , sy);
where kx ∈WK(GSCCx), · · · ,ky ∈WK(GSCCy).
By Lemma G.1, we know for each walk ki :

lenq(ki) ≤ max{lenq(ki)|ki ∈WK(GSCCi)} ≤AdaptSearchscc (GSCCi) = adaptscc[GSCCi]

Then we have:

lenq(kx,y) = lenq(kx)+lenq(k1)+·· ·+lenq(ky) ≤ adaptscc[GSCC1]+adaptscc[GSCC1]+·· ·+adaptscc[GSCCy] ≤ adapt

, where adapt is the output of AdaptSearch(Gprog). This case is proved.

Lemma G.1 (Soundness of AdaptSearchscc). For every program c, given its Program-Based De-
pendency Graph Gprog, if GSCC is a strong connected sub-graph of Gprog, then max{lenq(k)|k ∈
WK(GSCC)} ≤AdaptSearchscc (GSCC).

∀c ∈C,GSCC ∈G . GSCC ⊆graph Gprog(c) =⇒ max{lenq(k)|k ∈WK(GSCC)} ≤AdaptSearchscc (GSCC)

ProofSummary:
(1) for each node x on SCC, by property of SCC, for every walk on SCC kx,x = (x, s1, · · · , x), with set
of unique vertex {v1, · · · , x} there are PATH(px,x) on GSCC.
(2) For every path p i

x,x = (x, v1, · · · , x) ∈PATH(px,x), flowcapacity(p i
x,x) is the maximum visiting

times for every v ∈ (x, v1, · · · , x), visit(s)(s1, · · · , x)) ≤ flowcapacity(p i
x,x);

(3) querynum(p i
x,x)∗flowcapacity(p i

x,x) ≥ len(s|s ∈ (s1, · · · , x)∧Q(s) = 1) = lenq(k),
(4) Then, the max

p i
x,x∈PATH(px,x)

≥ max{lenq(kx,x)|kx,x ∈WK(kx,x)}

(5) Then, max{querynum(p i
x,x)∗flowcapacity(p i

x,x)|x ∈ GSCC∧p i
x,x ∈PATH(px,x)} ≥ max{lenq(k i

x,x)|x ∈
GSCC∧k i

x,x ∈WK(kx,x)}
(6) We also know by the property of SCC, ∀x, y ∈ GSCC, let kx,y be arbitrary walk on GSCC, lenq(kx,y) ≤
max{lenq(k i

x,x)|k i
x,x ∈WK(kx,x)}.

(7) Then,max{lenq(k i
x,x)|x ∈ GSCC∧k i

x,x ∈WK(kx,x)} ≥ max{lenq(k i
x,y)|x, y ∈ GSCC∧k i

x,y ∈WK(kx,y)}

i.e., max{lenq(k i
x,x)|x ∈ GSCC∧k i

x,x ∈WK(kx,x)} ≥ max{lenq(k)|k ∈WK(GSCC)} = Aprog(GSCC).
(8) We also know AdaptSearchscc (GSCC) = max{querynum(p i

x,x)∗ flowcapacity(p i
x,x)|x ∈ GSCC ∧

p i
x,x ∈PATH(px,x)} by the AdaptSearchscc algorithm.

Then we have AdaptSearchscc (GSCC) ≥ Aprog(GSCC)

Proof. Taking arbitrary program c ∈C, let Gprog(c) = (V,E,W,Q) be its program based dependency graph
and GSCC = (Vscc,Escc,Wscc,Qscc) be an arbitrary sub SCC graph of Gprog.
There are 2 cases:

case: GSCC contains no edge and only 1 vertex v , i.e., |E| = 0∧|V| = 1
In this case there is no walk in this graph, i.e., WK(GSCC) =;.
The adaptivity is Q(v).
This case is proved.

case: GSCC contains at least 1 edge and at least 1 vertex v , i.e., 1 ≤ |E|∧1 ≤ |V|
Taking arbitrary walk kx,y ∈WK(GSCC), with vertices sequence (x, s1, · · · , y), it is sufficient to show:

lenq(kx,y) = len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤AdaptSearchscc (GSCC)

68

By AdaptSearchscc (GSCC) algorithm line 19, in the iteration where x is the starting vertex, we know
AdaptSearchscc (GSCC) = rscc = max(rscc,dfs(GSCC,x,visited)), then it is sufficient to show:

len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ dfs(GSCC,x,visited).

Let {v1, · · · , x} be the set of all the distinct vertices of kx,y ’s vertices sequence (x, s1, · · · , y), and
(v1, · · · , x) be a subsequence containing all the vertices in {x, v1, · · · , y}.
By the definition of walk, there is a path px,y from x to y with this vertices sequence: (x, v1, · · · , y).
By line:13 of the dfs(GSCC,x,visited) in Algorithm 2,
we know dfs(GSCC,x,visited) = r [x] and r [x] = max{flowcapacity(p)×querynum(p)|p ∈PATHx,x (GSCC)},
where PATHx,x (GSCC) is a subset of PATHx,x (GSCC), in which every path starts from x and goes back
to x.
By the property of strong connected graph, we know in this case PATHx,x (GSCC) 6= ; and there are 2
cases, x = y and x 6= y .

case: x = y
In this case, we know px,y ∈ p ∈PATHx,x (GSCC), then it is sufficient to show:

len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,y)×querynum(px,y)

By line:7 and line:13 in Algorithm 2, we know flowcapacity(px,y) is the maximum visiting times
for every v ∈ (x, v1, · · · , y),
we know for every s in the vertices sequence of walk kx,y , visit(s)(x, s1, · · · , y) ≤ flowcapacity(px,y)
Also by line:8 and line:13 in Algorithm 2, we know querynum(px,y) is the number of vertices with Q

equal to 1,
Then we know
len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,y)×querynum(px,y)
This case is proved.

case: x 6= y
we also have a path start from y and go back to x.
Let py,x be this path with vertices sequence (y, v ′

1, · · · , x), we have a path px,x , which is the path px,y

concatenated by path py,x with vertices sequence (x, v1, · · · , y, v ′
1, · · · , v ′

m , x), where m ≥ 0.
Then in this case, it is sufficient to show:

len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,x)×querynum(px,x)

Since flowcapacity(px,y +py,x) is the maximum visiting times for every v ∈ (x, v1, · · · , y, v ′
1, · · · , x),

By line:7 in Algorithm 2, we know flowcapacity(px,y) is the maximum visiting times for every
v ∈ (x, v1, · · · , y),
we know for every s in the vertices sequence of walk kx,y , visit(s)(x, s1, · · · , y) ≤ flowcapacity(px,y)
Also by line:8 in Algorithm 2, we know querynum(px,y) is the number of vertices with Q equal to 1,
Then we know
len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,y)×querynum(px,y) = r [y]
By line:13, we also know r [x] = max(r [x],r [v ′

m] + flowcapacity(px,x) × querynum(px,x), and
r [y] ≤ r [w ′

m] then we know r [y] ≤ r [x], i.e., len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ r [x]
This case is proved.

69

H Conditional Completeness of Adaptivity Computation Algorithm

Theorem H.1 (Conditional Completeness of AdaptSearch). For every program c, given its Program-
Based Dependency Graph Gprog, if Gprog(c) is acyclic directed, then

AdaptSearch(Gprog) = Aprog(Gprog).

proof Summary:
1. for every two vertices x, y with a walk kx,y from x to y on Gprog,
2 since Gprog is acyclic directed, then this walk corresponds to a path px,y where every vertex is visited
exactly once.
3. the query length is sum of the query annotation.
From Algorithm 2, every vertex is a SCC with only one vertex and zeor edge, its adaptivity is exactly
its query annotation.
=> lenq(kx,y) = ∑

vi∈ssci

Adapt[scci]

This is proved.

Proof. Taking arbitrary program c ∈C, let Gprog(c) = (Vprog,Eprog,Wprog,Qprog) be its program based
dependency graph.
Let the walk kmax ∈WK(Gprog(c)) be the finite walk with the longest query length, and the vertices
sequence (s1, · · · , sn), it is sufficient to show:

lenq(kmax) = len(s|s ∈ (s1, · · · , sn)∧Qprog(s) = 1) =AdaptSearch(Gprog(c))

In order to show the completeness, it is sufficient to show two following items,
1. By line: 15, AdaptSearch(Gprog(c)) can find a path pmax such that adaptpmax = lenq(kmax)
2. This px,y is the longest weighted path found by AdaptSearch(Gprog(c)), and adaptpmax is returned
as the final output.
By the property of ACG, we know every si ∈ (s1, · · · , sn) shows up exactly once. Then we know this
walk is a path and

lenq(kmax) = ∑
si∈(s1,··· ,sn)

Qprog(si)

By line: 13, through searching on all the vertices connected on Gprog(c) from the starting node si , we
know that AdaptSearch(Gprog(c)) finds this path pmax = (s1, · · · , sn).
Then, it is sufficient to show

adaptpmax =
∑

si∈(s1,··· ,sn)
Qprog(si).

By line: 15, let GSCC1, · · · ,GSCCm be all the SCC, where each vertex in (s1, · · · , sn) belongs to, it is
sufficient to show: ∑

GSCCi∈(GSCC1,··· ,GSCCm)

adaptscc[GSCCi] = ∑
si∈(s1,··· ,sn)

Qprog(si).

By line:3 in Algorithm 1, let GSCCi = (Vi ,Ei ,Wi ,Qi) for GSCCi ∈ (GSCC1, · · · ,GSCCm) be the SCC found by
the standard Algorithm.,
Then, by the property of ACG, we know every GSCCi is a single vertex vi without edge and Qi is the
query annotation of vi , i.e., Vi = {si } and Qi = {(si ,Qprog(si))}.
So we know n = m.

70

Also by Algorithm 2 line: 4-5, we know adaptscc[GSCCi] = Qprog(si).
Then we can conclude:∑

GSCCi∈(GSCC1,··· ,GSCCm)

adaptscc[GSCCi] = ∑
GSCCi∈(GSCC1,··· ,GSCCn)

Qprog(si) = ∑
si∈(s1,··· ,sn)

Qprog(si).

So we have (1). "the existence" proved. In order to show pmax is the longest path found and adaptpmax
is returned by AdaptSearch(Gprog(c)), by line: 18, it is sufficient to show adapt= adaptpmax .
It is sufficient to show a contradiction if adapt 6= adaptpmax in following two cases:

case: adapt< adaptpmax
, it is easy to show the contradiction by line: 18 where adapt= max(adapt,adaptpmax) ≥ adaptpmax .

case: adapt> adaptpmax
, Let p ′

max be the path such that adapt= adaptp′max > adaptpmax with vertices sequence (s′1, · · · , s′n).
Then we know p ′

max corresponds to a walk k ′
max with the same vertices sequence.

Then by the same proof above, we know lenq(k ′
max) = ad aptp ′

max
and lenq(k ′

max) > lenq(kmax).
Then there is a contradiction that k ′

max is the walk with the longest query length rather than kmax .
Then, we have (2) proved.

References

[1] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon
Roth. Preserving statistical validity in adaptive data analysis. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 117–126, 2015.

[2] Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound analysis of
imperative programs using difference constraints. Journal of automated reasoning, 59(1):3–45,
2017.

71

	 Query While Language - Extended
	Labeled Language
	Trace-based Operational Semantics for Query While Language

	Event and Trace
	Event
	Trace

	 Dependency and Adaptivity
	Dependency
	Execution Based Dependency Graph
	Trace-based Adaptivity
	 Example From Limitation
	Trace-based Adaptivity

	AdaptFun
	A guide to the static program analysis framework
	Graph Estimation
	Adaptivity Computation

	Vertices Estimationn
	Edge and Weight Estimation
	Abstract Execution Control Flow graph
	 Edge Estimation with Interprocedure Call
	Weight Estimation via Path Sensitive Reachability Bound Analysis

	Program-Based Data Dependency Graph Generation
	Adaptivity Upper Bound Computation

	Examples and Experimental Results
	Examples
	Implementation Results

	Appendices
	Proofs of Lemmas in Section 1, 2 and 3
	Soundness of AdaptFun
	Soundness of AdaptFun with Dependency Graph and Adaptivity Extension
	Soundness of flowsTo with Language and Adaptivity Extension
	Inversion Lemmas and Helper Lemmas

	Soundness of Reachability Bounds Estimation
	Soundness of Edge Weight Estimation
	Soundness of Adaptivity Computation Algorithm
	Conditional Completeness of Adaptivity Computation Algorithm

