Program Analysis for Adaptivity Analysis

Contents

I Query While Language - Extended|

1

Labeled Language| e

M2

Trace-based Operational Semantics for Query While Languagel

3 Dependency and Adaptivity|

B

Dependency| e

B2

Execution Based Dependency Graph|.

B3

Trace-based Adaptivity| e

B4

Example From Limitation|

B3

Trace-based Adaptivity|

1

A guide to the static program analysis framework|

[4.1.1 Graph Estimation|
4.1.2 Adaptivity Computation|

A3

Edge and Weight Estimation|,

|4.3.1 Abstract Execution Control Flow graph|
|4.3.2 Edge Estimation with Interprocedure Call|
4.3.3 Weight Estimation via Path Sensitive Reachability Bound Analysis|.

i

Program-Based Data Dependency Graph Generation|.

@3

Adaptivity Upper Bound Computation|.

IS Examples and Experimental Results|

. XAMPICS| . . . o o e

52

Implementation Results|

"ll

[A Proofs of Lemmas in Section 1, 2 and 3|

B~ Soundness of AdaptFun]

|C Soundness of AdaptFun with Dependency Graph and Adaptivity Extension

11
11
12
12

14
14
14
14
15
15
15
19
21
24
24

32
32
35

43

43

45

48

[D Soundness of f1owsTo with Language and Adaptivity Extension 51

[D.1 Inversion Lemmas and Helper Lemmas| 54
[E Soundness of Reachability Bounds Estimation| 63
[F' Soundness of Edge Weight Estimation| 66
(G Soundness of Adaptivity Computation Algorithm| 67
[H Conditional Completeness of Adaptivity Computation Algorithm| 70

1 Query While Language - Extended

1.1 Labeled Language

Arithmetic Operators &, == +| — | x | + | max | min
Boolean Operators ®, = VI|A

Relational Operators ~ 1= < | < | ==

Arithmetic Expression a == nl|x|a®,al logal signa
Boolean Expression b = true|false|-b|beybla~a
Expression e = vl]al|bl]le,... el

Value v = n|true|falselll|l[y...,v]

| (r,X1,...,Xp):=¢C
Query Expression v = alalvegy| xlal
Query Value a == nlylnllaezalne,xlnl| ynle,n
Label l = (meNu{in,ex}) | (I,n)
c

Labeled Command n= [x—ell | [x— query(l//)]l | [Skip]l | while [b]'doc| if ([b1},¢c,0)
| [fun]l:x(r,xl,...,xn) =c| [x<— call (x,el,...,en)]l | ¢c;c

Event € = (x,Lve) | (x,L,va) Assignment Event
| (b,1,v,e) Testing Event

Trace T = [IlT:e

We use following notations to represent the set of corresponding terms:

VAR : Setof Variables

VAL : Setof Values

QVAL . Setof Query Values

¢ : Set of Commands

& : Set of Events

gasn Set of Assignment Events
grest . Set of Testing Events

L : Set of Labels

VAL : Setof Labeled Variables
DB : Set of Databases

T : Set of Traces

Tolc) . Set of Initial Traces, where all the input variables of the program c are initialized.
aD : Domain of Query Results

Environment p: T — VAR - VAL U{Ll}

pru(x,Lv,x2v pa:(y, Ly,)x=p@xy#x p:blve0))xEp()x
pr:(x,Lv,a)xEv pa:(y,Lv,a)x=p@x,y#x phx=1

1.2 Trace-based Operational Semantics for Query While Language

‘ (t,a) U4 v : Trace x Arithmetic Expr = Arithmetic Value‘

p(t)x=v (T,a1) Ya 1 (1,a2) Ja V2 V1 ®qU2=V
(T,n) an (T,x) Jqv (T,a1®qa2) Ja v
(r,a) g V' logv =v (r,a) g V' sign v =v
(1, log a) Ya v (1, signa) Ya v

(t,b) Jp v : Trace x Boolean Expr = Boolean Value

(T,b) Yp v -v'=v
(r,false) | false (1,true) |, true (t,7b) Jpv
(t,b1) Up 1 (T,b2) Up V2 V1@l =V (r,a1) a1 (t,a2) Yq 12 Vv~V =V
(T,by®p b2) Jp v (r,a1 ~az) ypv

‘ (t,e) |Je v : Trace x Expression = Value‘

(T, a)Ya v (T,b)yp v (T,eny Jev1---(T,en) Je Vn

(T,a) Jev (T,b) Je v (t,le1, -+, enl) Ue (V1,7 , vyl (T,) Jev

(t,9) J4 a : Trace x Query Expr = Query Value‘

(t,a) Jan (T,91) Jq a1 (T,92) Uq a2z (t,a) Jan
(r,a) g n (T,Y1©04Y2) g a1 942 (r,xlal) Y4 x(n] () Ug @

The trace based operational semantics rules are defined in Figure[I]

Definition 1 (Label Increase). Label Increase +:L — N — L, increase a label | by a natural number
n:

n+n 20" n,n' eNA(,n+n)Jan" Gn+n2U+n',n")ynn eNA(l,n+n"y Ugn"

The case of (I, n) + n' will never happen during evaluation. By Operational semantics, the only
place the label increase is in rule fun-def, ¢’ = (¢)*", where c is the function body. By the rule fun-call,
and the label augment in Definition 3] the function body ¢ will never be augmented.

| Command x Trace — Command x Trace | (¢, T) = (",

e=(x,1,v,0)

; 7 skip ; assn
([skip]’, 1) — ([skip|,T) ([x — al’,7) — ([skip]’, 7::€)
(T, y) g query(a) =v e=(x1va)
. ; query
([x — query(y)]',7) — ([skip] , 7€)
(1,b) |p true €= (b, 1,true,eo) .
7 7 while-t
(while [b]' doc,T) — {c; while [b] do ¢, T::€)
(1,b)) false e=(b 1 false,s) . (c1,7) = (e, 1"
; while-f p — seql
(while [b]!, doc,T) — ([skip]’, 7::€) (c1;62,T) —{c1;€2,T)
(€2,)y — (), T") (,b) Uptrue €= (b1, true,s)
7 seq2] if-t
([skip]’;c2, 1) — (c), T (1if ([b]', c1,€2),T) — {c1,T€)
(1,b) |p false e=(b,l,false,o) £
l -
(if (b)), c1,02),7) — (c2, 7€)
c=ct" e=(x1(rx1,....,x5) :=C0)
! . fun-def

((fun 1" s x(r,x1,..., Xp) = ¢,7) — ([skip]’, T::€)
T HVe (hxn,.nxp)i=c (x— el 5 lx, — e ™™, 1) —* ([skip] "™, 11)

(1 1y —* ([skip]’ 7y @ lev e=(x1v,9)
fun-call

([x— call (f, el,...,en)]l,r) . ([skip]l,r' e)

Figure 1: Trace-based Operational Semantics for Language.

Definition 2 (Command Label Increase)
command by n.

([x — el

([x — query)]’
([skip])*"
(while [b]'do)™

(if (b, c1,e2)*"
((fun]':x(r!, x1,...,xp) :=)"
([x — call (x,eq,...,e,)]H*"
(c1;¢)™"

)+n

> 1> 1> e 1> 1>

L

L

. Command Label Increase (1)t": C — G, increase the label in

[X‘— e]l+l’l

[— query()] "

[skip] "

while [b]"*" do ()"

if ([B1"*7, ()™, (e)*™)

[fun 7 x(r!, x1,..., %) := ()"
[x — call (x,ep,...,e,)] "
()™ (e)™"

Definition 3 (Command Label Augment). Command Label Augment []" : @ — C, augment the label in

command with a label [in order to record the calli
[x — e] l’]l
!
[x — query()]']
111
[skip]’|
] 1

while [b]" do ¢’
, I
1£ (b)' 01,)
/ 1
[fun]l :x(rl,xl,...,xn) = c]

1
[x — call (x,el,...,en)]l]

[c1; col

ng site.

AL [x — e](l,l')

L [x — query(y)] (@)

Ll

[

[skip](

while [b]"!) do (¢)!

if (14D, (e, (e)h

A !
= fun](l’” :x(rl,xl,...,xn) =c

£ [x — call (x, el,...,en)](”’)

2 [c11h [eo)!

The labeled variables and assigned variables are set of variables annotated by a label. We use
LV represents the universe of all the labeled variables and AV, € P(VAR xN) ¢ LV and LV, €

PVAR x L) < LV, represents the the set of assig
command ¢, defined in Definition [5]and [}

ned variables and labeled variables for a labeled

FV:e— P(VAR), computes the set of free variables in an expression. To be precise, FV (a), FV (b)
and FV () represent the set of free variables in arithmetic expression a, boolean expression b and

query expression ¥ respectively. Labeled variables
variables showing up in ¢ with a default label in.

in c is the set of assigned variables and all the free
The free variables showing up in ¢, which aren’t

defined before be used, are actually the input variables of this program.
Definition 4 (Assigned Variables (AV : C — P(VAR x N))).

{xly

(x4

AV, UAV,,
AV, UAV,,
AV

Definition 5 (labelled Variables (LV: C — P(LV)).

xlyuFV(e)in
YU FV)"
LV¢, ULV,

AV, 2

LV, 2

LVc ULV, UFV ()"

LVy UEV ()"

l

c=[x<—e]
¢ =[x < query (u/)]l
c=cC1;02

c=if (bl c1,)
c= while ([b]},c)

c= [x<—e]l
¢ =[x — query)]}
c=ci;0

c=if (b, c1,)
c= while ([b]},c)

We also defined the set of query variables for a program c, it is the set of variables set to the result
of a query in the program formally in Definition [6]
Definition 6 (Query Variables (QV : C — P(LV))). Given a program c, its query variables QV(c) is
the set of variables set to the result of a query in the program. It is defined as follows:
i c=[x—el
{xl} ¢ =[x < query (w)]l
QV(O£{ QV(c)UQV(cr) c=cp5e2

QV(e)UQV(cp) c= if (b c1,¢2)
QV(c) c= while ([b]},¢")

It is easy to see that a program c’s query variables is a subset of its labeled variables, QV(c) € LV(c).
Every labeled variable in a program is unique, formally as follows with proof in Appendix [A]

Lemma 1.1 (Uniqueness of the Labeled Variables). For every program c € C and every two labeled
variables such that x*,y) € LN/(c), then x* # y/.

Vce@,xi,yjeﬁ.xi,yjeﬂ_\/(c) = xi;éyj.

2 Event and Trace

2.1 Event

Event projection operators 7; projects the ith element from an event:

7 & — VAR UBoolean ExpressionUNU VAL UQVAL

Free Variables: FV : e — P(VAR), the set of free variables in an expression.
FV(y) is the set of free variables in the query expression .

Definition 7 (Equivalence of Query Expression). Two query expressions w1, W are equivalent, denoted
as Yy =q Y, if and only if

VT eT . 3ay, az € QVAL . (1,91) Jg a1 A LT, p2) Ug a2)
ANVDeDB,reD.FveVAL (r,a1(r/xl) JavAnlT,a2(r/yD) g v)

where r € D is a record in the database domain D. As usual, we will denote by v # 4 Y> the negation
of the equivalence.

Definition 8 (Event Equivalence). Two events €1,€; € € are equivalent, denoted as €, = €3 if and only

my(e1) = mi(€2) Ama(€e1) = ma(e2) Ams(er) = m3(€2) Amaler) =4 m4(€2)

As usual, we will denote by €1 # €, the negation of the equivalence.

Definition 9 (Events Different up to Value (Diff)). Two events €1,€e2 € Eare Different up to Value,
denoted as Diff(ey,€2) if and only if:

71(€1) =m1(€2) AT2(€1) = M2 (€2)
N((m3(e1) # m3(€2) ATa(er) = mal€2) =) V (Ma(€1) # o AT4(€2) # ATa(€1) #g Ma(€2)))

2.2 Trace

Definition 10 (Trace Concatenation, ++: T — T — 7). Given two traces T1,T» € 7T, the trace concatena-
tion operator ++ is defined as:

T1++T2 £ { 1 ’ T2= [],
(T1++T2) NE Ty=T,l€
Definition 11. (An Event Belongs to A Trace) An event € € € belongs to a trace T, i.e., € € T are defined
as follows:
true 1=1'ue Ae=¢
eeré{ eet t1=1ue Ae#e (1)
false 7=]]

As usual, we denote by € ¢ T that the event € doesn’t belong to the trace T.

We introduce a counting operator cnt : T — N — N whose behavior is defined as follows,

cnt(T: (x, 1, v,e),) Zcnt(r,) +1 cnt(t: (b1, v,e),) Zcnt(r,) +1 cnt(t:(x, L v,a),l) 2 cnt(r,)+1
ent(T: (0, v,0),) £ cnt(t,D),l' #1 cnt(T: (b1, v,e),) Zcnt(r,]),l'#1 cnt(r:(x, 1, v,a),l) = cnt(t,D),l' #
cnt([1,1) 20

We introduce an operator ¢ : T — VAR — L U {1}, which takes a trace and a variable and returns the
label of the latest assignment event which assigns value to that variable. Its behavior is defined as
follows,

T L L DX 2L L)x2um)x,yZx rzbLy,))x2imx (Dx2 L

The operator TL : T — P(L) gives the set of labels in every event belonging to a trace, whoes behavior
is defined as follows,
TL =G LoD 2 {BUTLE TLID 2§

If we observe the operational semantics rules, we can find that no rule will shrink the trace. So we
have the Lemma 2.1 with proof in Appendix [A] specifically the trace has the property that its length
never decreases during the program execution.

Lemma 2.1 (Trace Non-Decreasing). For every program c € C and traces 1,17" € T, if (¢, T) —*
(skip,1'), then there exists a trace T"" € T with T++17" =1’

V1,7 €T,c.{c,T) =" (skip,7’) = " €T . 17" =71

Since the equivalence over two events is defined over the query value equivalence, when there is
an event belonging to a trace, if this event is a query assignment event, it is possible that the event
showing up in this trace has a different form of query value, but they are equivalent by Definition|/| So
we have the following Corollary [2.0.1] with proof in Appendix [A]

Corollary 2.0.1. For every event and a trace T € T, if € € T, then there exist another event €' € & and
traces 11,72 € T such that T1++[€']++T2 = T with € and €' equivalent but may differ in their query value.

Veel,1eT . cet = I, 12T, '€ €. (ece)AT [)sTa =T

3 Dependency and Adaptivity

3.1 Dependency

To define the may dependency relation on two labeled variables, we rely on the limited information at
hand - the trace generated by the operational semantics. In this end, we first define the May-Dependency
between events, and use it as a foundation of the variable may-dependency relation.

We compare two events by defining the Diff(e,€2), we use ¥ =4 ¥2 and ¥ #4 Y2 to notate
query expression equivalence and inquivalence.

Definition 12 (Events Different up to Value (Diff)). Two events €1,€, € € are Different up to Value,
denoted as Diff(ey,€2) if and only if:

m1(e1) = mi(e2) Ama(er) = ma(e2)
A((m3(€1) # m3(€2) ATa(e1) = Mal€2) = o) V (M4(€1) # o AT4(€2) # o AT4(€1) #g Ta(€2)))

For a program, its labeled variables and assigned variables are sub set of the labeled variables
LV. We use AV(c) e PVAR xN) c LYV and LV(c) € P(VAR x £L) € LV for them. FV:e — P(VAR),
computes the set of free variables in an expression. We also define the set of query variables for a
program ¢, QV: C — P(LV). Itis easy to see that a program ¢’s query variables is a subset of its labeled
variables, QV(c) € LV(c). We have the operator TL : T — £, which gives the set of labels in every
event belonging to a trace. Then we introduce a counting operator cnt : T — N — N, which counts the
occurrence of of a labeled variable in the trace, whose behavior is defined as follows,

ent(r: (L,), D& cent(r,D+1 cntr= (U,), D=cnt(@r,D),I'#1 cnt([,) =0
The full definitions of these above operators can be found in the appendix.

Definition 13 (Value Sequence seq(T,xl)).

seq(t: (x, L, v, -),xl) £ seq(T) v seq(t: (x, [, v, a),xl) £ seq(T) seq([]) £ 1
seq(t: (y, j,_,_),xl) £ seq(r) y#xVj#l

Definition 14 (Difference Sequence Diffseq(rl,rg,xl)). Let 51 = seq(rl,xl) A Sy = seq(Tg,xl) be the
value sequence of x! on 11 and 15, and s,y be the sequence with longer length and $p,i, the shorter
one, then their difference sequence is defined as follows,

. Iy o Sminlkl, SmaxkD) | Sminlk] # Smaxlkl,k=0,...,len(smin)}
Piffaeq(TLT2)= (. Snax k) | Len(Smin) < Len(Smar)k = [en(smin .. Len(smax)}

Definition 15 (Event May-Dependency). .
An event €, is in the event may-dependency relation with an assignment event €1 € E*" in a program c
with a hidden database D and a trace T € T denoted as DEP¢ (€1, €2, [€1]++T++[€2], ¢, D), iff

310,71,7' €T,€]; € E2%,¢1,c0 € C . Diff(ey,€))A
(c,To) =" {c1,T1++[€1]) =7 {2, T1++[€1]++T++[€2])
ey el | N (e, Tr+[€]]) =7 (c2, T+ [€] T e [€5])
A Diff(es,€5) Acnt(r,ma(e2)) = cnt (', m2(€)))
v3rs, 1, €T, e € E¥5° .
(c,Tg) =" {c1,T1++[€1]) = {Co, T1++[€1]++T++[€p]++T3)
A\ (Cl,T1++[€,1]) —* (Cg,T1++[€’l]++T,++[(_'€b)]++Té))
A TlynTly =@ A cnt (), m2(€p)) = cnt (T, ma(ep)) A€2 ET3AEL € TY

9

Our event May-Dependency relation of two events €1 € £25" and ¢ € &, for a program ¢ and hidden
data base D is w.r.t to a trace [e1]++T++[€2]. €1 € E35" is an assignment event, because only a change
on the assignment event will affect the execution trace, according to our operational semantics. In
order to observe the changes of €, under the modification of €, this trace [€1]++T++[€2] starts with
€1 and ending with e€,. The May-Dependency relation considers both the value dependency and
value control dependency as discussed above. The relation can be divided into two parts naturally in
Definition[I5]line 2 — 4, 5 — 8 respectively, we think it start from line 1). The idea of the event €; may
depend on €, can be briefly described: We have one execution of the program as reference (See line 2
and 6 , for the two kinds of dependency). When the value assigned to the first variable in €; is modified,
the reference trace 7;++[€;] is modified correspondingly as 71++[€}]. We use Diff(ey,€}) at line 1 to
express this modification, which guarantees that €; and € only differ in their assigned value and are
equal on variable name and label. We perform a second run of the program by continuing the execution
of the same program from the same execution point, but with the modified trace 71++[€] (See line 3, 7).
The expected may dependency will be caught by observing two different possible changes (See line
4,8 respectively) when comparing the second execution with the reference one.

In the first part, (line 2—4 of Deﬁnition we witness the appearance of ¢, in the second execution,
and a variation between €, and 6’2 on their value. We have special requirement Diff (e, 6’2), , which
guarantees that they have the same variable name and label but only differ in their evaluated values. In
particularly for query, if €, and €/, are generated from query requesting, then Diff (e,,€;) guarantees
that they differ in their query value rather than the query requesting result. Additionally, in order to
handle the multiple occurrence of the same event through iterations of the while loop, where € and ¢/,
could be in different while loop, we restrict the occurrence times of €,’s label in the first(reference) trace
equals to the occurrence times of e’2’s label in the second trace, through cnt(t, 72 (€2)) = cnt (1, 72 (6’2)).

In the second part (line 5 — 8 of Definition [I5) , we witness the disappearance of €, through

observing the change of a testing event €;. In order to change the appearance of Syhan event, the
command that generates €, must not be executed in the second execution. The only way to control
whether a command will be executed, is through the change of a guard’s evaluation result in the if or
while command. So we first observe the testing event €; changes into -, in the second execution,
following with the disappearance of €, in the second trace.
In the same way, we restrict the occurrence times of €j,’s label in the two traces being equal through
cnt (1), m2(€p)) = cnt (7, m2(€p)) to handle the while loop. Again, in particularly for query, we observe
the disappearance based on the query value equivalence. Considering a program’s all possible execu-
tions(with respect to initialized user input), among all events generated during these executions and the
variables and labels of these events are corresponding to the two labeled variables, as long as there is
one pair of events satisfying the Event May-Dependency relation in Definition [15] then we say the two
variables satisfy Variable May-Dependency relation in Definition [T6]

Definition 16 (Variable May-Dependency). .
A variable xéz € LV(c) is in the variable may-dependency relation with another variable x{l elLV(c) in

a program c, denoted as DEPvar(xil,xf, c), if an only if.

Je1,62€ €32 7€ T, DeDB . my(ey) ™€ = x{l ATy (€9)™2(€2) = xéz ADEP.(€1,€5,7,c, D)

A variable yj e LV(c) is in the may-dependency relation with another variable xielV(c)ina program
¢, w.r.t. an initial trace 1y € T(c) and two witness traces 11,72 € T, denoted as DEP (x*, y/,71,72, 70, ¢),

if an only if

ID e DB,T6 eT. (VZI # ¥l p(T(),Zl) = p(‘ljé),zl)) A{c, Ty —* ([Skip]l,T0++T1> N {c, 76> —* ([skip]l,‘[6++‘[2>
ADiffgeq(T1,72,)7) # @

10

We denote Ty(c) as the set of initial traces in which all the input variables in ¢ are initialized.

3.2 Execution Based Dependency Graph

The variable May-Dependency relation gives us the edges, we define the execution based dependency
graph.

Definition 17 (Execution Based Dependency Graph). Given a program c, its Execution-Base Depen-
dency Graph Girace(€) = (Verace (€), Etrace (€), Werace (€), Qerace (€)) is defined as follows,

Virace(©) = {(xhw)|w:T—-NAx'elV(c)

AVTETo(c), T €T . {c,7) =™ (skip,7++7') = w(r) =cnt (v, 1)}

(L w,y) | xh yl €LV Aw e P(T —N)ATT e Ty(e), 71,72 € T . DEP(x!, 4, 71,72, 70, ¢)
AVT € To(c) . w(Tg) = max{|Diffseq (1,72, Y)IVT1,T2€T . DEP(x!,y/,71,72,70, 0)}}

Etrace(c)

There are two components of the execution-based dependency graph.

The vertices Virace(€) s a set of pairs, (x!, w) € LY x (T — N), with a labeled variable as first component
and its weight w the second component. Weight w for x' is a function w : T — N mapping from
a starting trace to a natural number. When program executes under this starting trace 7, {c,7) —*
(skip, T++7'), it generates an execution trace 7’. This natural number is the evaluation times of the
labeled command corresponding to the vertex, computed by the counter operator w(r) = cnt(7’,).
We can see in the execution-based dependency graph of twoRounds in Figure 3(b) in main paper, the
weight of vertices in the while loop is p(7) k, which depends on the value of the user input k specified
in the starting trace 7.

The directed edges Eirace(c) is a set of triples (x!, w, yf) e LV x (Tg — N) x LV, with two labeled
variables (from x’ pointing to y/) and a weight w for this edge. The edges are constructed directly
from our variable may-dependency relation. For any two vertices x’ and y/ in Vizace(c), if there exists
two witness traces 71,72 and an initial trace 7¢ € Ty such that, they satisfy the variable may-dependency
relation DEP (x!, yj, T1,T2,70,C) , there is a direct edge. The weight of the edge is a function w : Ty — N,
where given an initial trace 7y, it of the edge is the maximum length of their difference sequence
between all pairs of the witness traces 71,7, of their dependency relation. In most data analysis
programs ¢ we are interested, there are usually some user input variables, such as k in twoRounds. We
denote Ty(c) as the set of initial traces in which all the input variables in ¢ are initialized, it is also
reflected in Wepace(C).

3.3 Trace-based Adaptivity

Given a program c’s execution-based dependency graph Girace (), we define adaptivity with respect to
an initial trace 7 € Jy(c) by the finite walk in the graph, which has the most query requests along the
walk. We show the definition of a finite walk as follows.

Definition 18 (Finite Walk (k)). .

Given the execution-based dependency graph Girace(€) = (Virace(€), Etrace(€), Werace (€), Qtrace (€)) Of
a program ¢, a finite walk k in Girace(€) is a function k : T — sequence of edges. For a initial trace
10 € Jo(c), k(tg) is a sequence of edges (e ...e,—1) for which there is a sequence of vertices (vy,...,Vy)
such that:

11

* ¢; = (Vi, Wi, Vi+1) € Etrace(C) for every 1 < i < n, and e; appears in (e;...e,—_1) at most w;(tg)
times.

e every (Vi, W;) € Vyrace(€) and v; appears in (vy,...,V,) at most w;i(tg) times.
The length of k(ty) is the number of vertices in its vertices sequence, i.e., len(k)(tg) = n.

We use WK (Gerace(€)) to denote the set containing all finite walks k in Girace(€); and ky,—,, €
WX (Girace (€)) With v1, V2 € Virace (€) denotes the walk from vertex vy to vs .
We are interested in queries, so we need to recover the variables corresponding to queries from the
walk. We define the query length of a walk, instead of counting all the vertices in k’s vertices sequence,
we just count the number of vertices which correspond to query variables in this sequence.

Definition 19 (Query Length of the Finite Walk(1en%)). .

Given the execution-based dependency graph Girace(€) = (Virace (€),Etrace(€)) of a program c, and a
finite walk k € WX (Gyrace(€)). The query length of k is a function len?(k) : T — N, such that with an
initial trace 1o € To(c), Len(k)(to) is the number of vertices which correspond to query variables in
the vertices sequence of the walk k(tg) (vy,...,v,) as follows,

leni(k)(to) =I(v I vE (V1,...,v) AVEQV(0))I.

3.4 Example From Limitation

Example 3.1 (Accurate Adapativity for Multiple Rounds Single Example). The program’s adaptivity
in our formal model, in Definition |20| also comes across an over-approximation on the program’s
intuitive adaptivity rounds. It is resulted from difference between its weight calculation and the variable
may-dependency definition. It occurs when the weight is computed over the traces different from the
traces used in witness the variable may-dependency relation.

As the program in Figure[2{a), which is a variant of the multiple rounds strategy, named multipleRoundSingle (k)
with input k. In this algorithm, at line 7 of every iteration, a query query(x[yl + p) based on previous
query results stored in p and y is asked by the analyst like in the multiple rounds strategy. The
difference is that only the query answers from the one single iterations (j = k—2) are used in this query
query(xlyl + p). Because the execution trace updates p using the constant 0 for all the iterations
where (j # k—2) at line 10 after the query request at line 7. In this way, all the query answers stored
in p will not be accessed in next query request at line 7 in the iterations where (j # k—2). Only query
answer at one single iteration where (j = k—2) will be used in next query request query(y[yl + p)
at line 7. So the adaptivity for this example is 2. However, our adaptivity model fails to realize
that there is only dependency relation between p’ and p” in one single iteration, not the others. As
shown in the execution-based dependency graph in Figure Ekb), there is an edge from p’ to itself
representing the existence of Variable May-Dependency from p” on itself, and the visiting times of
labeled variable p’ is wy.(to) with a initial trace 1. As a result, the walk with the longest query length
is p — -+ — p’ — y* — 2! with the vertex p” visited wy.(t), as the dotted arrows. The adaptivity
based on this walk is 2. The AdaptFun is able to give us 2, as an accurate bound w.r.t this definition.

3.5 Trace-based Adaptivity

Definition 20 (Adaptivity of a Program). .
Given a program c, its adaptivity A(c) is function A(c) : T — N such that for an initial trace 1y € Ty(c),

A(c) (1) = max {1en?(k)(to) | k € WK (Gerace (€))}

12

RN
multipleRoundsSingle(k) 5 v
- 0, 1, ¢
[j —k]"; [z — query(0)] ; 3. Wi 0w
. . 2 To — p(Togk) V74 J o
while [] >O] do *

(v — query(xtz1 + »]; “

if ([j#2)% [y —0]% [skip]® 1

AN
i —i-1]) o o
(a) 0 0

(b)
Figure 2: (a) The multi rounds single example (b) The execution-based dependency graph.

13

Simple Scan ‘ Vertices, Query Annotations
- . @) Program-Based Adaptivity
Reachability Bound | Weights |g Longest | {ynner Bound
Program Abstract Control Flow Analysis —— = » |8 | _Dependency Graph _ | "= ™ |[LPPer Soun
> AI;rogratrin Graph 2 Search
straction Feasible Data-Flow | _£dges
Analysis
Figure 3: The overview of AdaptFun
4 AdaptFun

In this section, we present our static program analysis for computing an upper bound on the adaptivity
of an arbitrary program c, as we define in last section.

4.1 A guide to the static program analysis framework

In order to have the upper bound of the adaptivity of a program c, we design a program analysis
framework AdaptFun. It can be divided as two steps: 1) to construct a weighted depdenency graph
based on c. 2) to find a path in this graph, which is used to estimate an upper bound on the adaptivity
of c.

4.1.1 Graph Estimation

According to the dependency graph we use in adaptivity definition, we want to build a similar graph
to over-approximate the Execution-Based Dependency Graph (in Definition[I7). The construction
considers the vertices, edges, and the weight of every node, as well as some annotations which marks
the query usage. The overall picture of this step is organized as follows.

1. Vertices are the assigned variables with unique labels, which is extracted directly from the
program, see Section 4.2| without extra static analysis technique

2. The edge between vertices considers both control flow and data flow, See Section[4.3.2]

3. Every vertex and edge come with a weight, which tells the maximal times each vertex and edge
can be visited in realistic execution. This weight is estimated by a reachability bound analysis on
each vertex, See Section[d.3.3]

4. Finally, with all the ingredients ready, we construct the final approximated program-based
dependency graph in Section §.4]

Overall, this program-based graph has a similar topology structure as the Execution-Based Depen-
dency Graph. It has the same vertices and query annotations, but approximated edges and weights. We
call the graph generated by static analysis techniques, static analysis dedendency graph.

4.1.2 Adaptivity Computation

Likewise the adaptivity is defined as a finite walk in the execution based depdenency graph, our static
estimation on this adaptivity also relies on finding a path in the static analysis depdenency graph.

14

The construction of the stastic analysis dependency graph is of great value of showing some useful
properties of the target program, such as dependency between variables, the execution upper bound
of a certian command, while the key novelty is our path searching algorithm, which connects all the
information we need in the static anlaysis dependency graph and provides us a sound over-estimation
of adaptivity! In order to get a sound but precise upper bound, we will discuss some challenges in
finding the ’appropriate’ path in the graph, and how our algorithm responds to these challengs. We
present the path seaching algorithm in Section[4.5]

4.2 Vertices Estimationn

The first component of every vertex in the static analysis dependency graph are actually identical as the
Execution-Based Dependency Graph, which are assigned variables in the program annotated with the
unique label(line number). These vertices are collected by statically scanning the program, like what
we do for vertices of its Execution-Based Dependency Graph. The vertices are defined formally as
follows.

VprogO(C) 2 {(xl, w) e LV x Ain

xle [L\/(c)}

where A, is the set of arithmetic expressions over N and program’s input variables. The weight w for
every vertex will be computed in following step in Section4.3.3

4.3 Edge and Weight Estimation

Since the edges of the execution-based graph of a program relies on the dependency relation, which
handles both control flow and data flow, as an over-approximation of this graph, the edges of our static
anlaysis dependency graph also covers these two kind of flows. We develop a feasible data flow relation
to catch these two flows, in Section[4.3.2}

The weight of every vertice in the execution-based graph is built on all possible execution traces.
In order to over-approximate the weight statically but still tightly, we present a symbolic reachability
bound analysis for estimation of the weight of each vertice(label) in Section4.3.3] in spirit of some
reachablility bound techiniques.

The edges and weight estimation are both performed on basis of an abstract control flow graph
of the program, we first show how to generate this abstract execution control flow graph before the
introduction of the edge and weight estimation.

4.3.1 Abstract Execution Control Flow graph

We discuss the vertices and edge of the abstract control flow graph for a program c, absG(c).
Every vertex corresponds to the unique label. Specifically, the vertices of this graph is the set of ¢’s
labels with an exit label /.,
absV(c) = labels(c) U {lex}

The edge in the abstract control flow graph comes from the abstract execution trace of the program.
The abstract execution trace, an abstract representation of the execution, consists of a list of abstract
transitions. Then, every abstract transition in the abstraction execution trace corresponds to an edge in
the abstract control flow graph. In another word, the edge (/1,dc, I») in the abstract control flow graph,
represents an abstract transition from [; to l», with a set of difference constraints dc. Also notice, the
difference constraints generated during the abstract transition appears in the edge as annotation.

15

Overall, the vertices can be easily collected and the key point of construction of the abstract
execution control flow graph for a program is the abstract execution trace, which relies on the abstraction
of expression and abstract transition (we also call it abstract event), we will discuss in the following
section. To make it easy to understand, abstract control flow graph is a control flow graph, with
difference constraints on every edge.

Expression Abstraction The expression assigned to the variable on the left hand of the assignment
command is abstracted to an abstract value: (adopted from the expression abstraction method in
paper [2]]). The abstract value is expressed in the form of Difference constraint, denotated as DC :
VARUSMBECST — VAR x (VAR USMBECST) x (Zu{oo}). SMBECST is called the Symbolic Constant
defined as SMBCST £ N U VAR;, U {max (DB)}, which consists of natural numbers N, the program’s
input variables VAR;, and a constant value Qy, for estimating the upper bound of variables which are
assigned by queries.

Give an instance of difference constraint used here, DC(VAR USMBECST) U {T} represents all
the difference constraints over variable and symbolic constants. It is a set of the inequality of form
x<y+ v where xe VAR, y e VARUSMBECST and v € Z. This difference constraint is defined in the
same way as [2]. For concise, we use DET to represent the DC(VARUSMBCST)uU{T}.

We show the expression abstraction absexpr : e — VAR — DC(VARUSMBCST) U {T} below.

absexpr(x—v,x)=x'<x-v x€VARguaraAVEN

absexpr(y+ 1, X)=x'<y+v Xx€VARguaraAVEZAYE (VARguara USMBEST)
absexpr(v,x)=x'<v+0 x € VARguara A V€ (VARguara USMBECST)
absexpr(y+uv,x)=x'<y+v

VARguara = VARguara Uy} X € VARguara AVEZ Ay ¢ (VARguara USMBEST)
absexpr(y,x) =x'<0+Q;; x € VARguara A W is a query expression

absexpr(b,x) =x'<0+1 x € VARguara A b is a boolean expression
absexpr(e, x) = x' <oco x € VARguara A e doesn’t have any of the forms as above
absexpr(e,x)=T x ¢ VARguara

VARguara is the set of variables used in the guard expression of every while command in the
program c. In the case 4, if a variable x, belonging to the set VARguarq is updated by a variable y,
which isn’t in this set, we add y into the set VARguarq and repeat above procedure until VARguarq and
absexpr(e, x) is stabilized.

Specifically we handle a normalized guard expression (x > 0 for x' € LV,) in while, and the counter
variables only increase, decrease or reset by simple arithmetic expression (mainly multiplication,
division, minus and plus (able to extend to max and min)). This is the same as in paper [2].

For more complex expression assignments, where the counter reset, or calculated from log , multipli-
cation or division, and expressions involving multiple variables, the constraint is approximated as reset
of co.

This approximation strategy doesn’t affect our analysis results in our examples. It is easy to extend the
normalized expression into more complex forms as in [2]], as well as the counter variable manipulation
with more advanced expressions.

Program Event Abstraction We show the abstract event definition, which is generated when com-
puting its abstract execution trace.

16

Definition 21 (Abstract Event). Abstract Event: €€ L x DC' x L is a triple where the first and third
components are labels, second component is a constraint from DCT.

Specifically, in an abstract event, the first label correspond to an initial state, and the second label
and the constraint correspond to an abstract final state. The abstract initial state is a label from £. The
abstract final state is a pair from £ x DC, where first component is a label from £ and the second
component is a constraint from DEC .

Given a program c, its abstract initial state, and the set of its abstract final state is computed as
follows,

absinit([x — e]) =1
absinit([x — e])) =1
absinit([skip] l) =1
absinit(if [b]! then cielsecy) =1
absinit(while [b]’ do c) =1
absinit(cy;co) =absinit(cy)

Final State Abstraction: absfinal: C — P(L x DGT), computes the set of Abstract Final State for the
command.

absfinal([x <« e]l) = {(l,absexpr (e, x))}
absfinal([x«—query(t//)]l) ={(,x' <0+ Qu)}
absfinal([skip]’) ={(1, T

absfinal(if [b]’ then c1elsecy) =absfinal(c;)Uabsfinal(cy)
absfinal(while [b]' do) ={(L,T)

absfinal(cy;cp) =absfinal(cy)

Abstract Execution Trace Now, we extract the abstract execution trace abstrace(c) for a program,
which computes the Abstract Execution Trace for program c, as a set of the abstract events €.

Definition 22 (Abstract Execution Trace). abstracee C— P(L x DC(VARUSMBCET)u{T} x L)

We now show how to compute the abstract execution trace. For simplicity, we use P(€) represent
the power set of all abstract events, and we have abstrace(c) € iP(Z‘). We first append a skip command
with the exist label ey, i.e., [skip] s at the end of the program c, and compute the abstrace(c) =
abstrace’(¢') for ¢/, where ¢’ = c; [skip]l” as follows,

abstrace’ ([x — e]}) =9

abstrace/([x — query(y)]) =9

abstrace’([skipl}) =¢

abstrace’ (if [b]! then c; else cf) = abstrace’(cy) U abstrace'(cf) U{(/,T,absinit(cy)), (I, T,absinit(cs))}
abstrace’(while [b]! do cy) =abstrace’(cy) U{(, T,absinit(cy))} U{(l',dc, DI, dc) € absfinal(cy)}
abstrace’(cl;cz) = abstrace’(cl) U abstrace’(cz) U{(l,dc,absinit(c2))|(l,dc) € absfinal(cy)}

Notice abstrace’([x:= e]'), abstrace’([x:= query(u/)]l) and abstrace’([skip]l) are all empty
set. For every event € with label [in an execution trace T of program c, there is an abstract event
in program’s abstract execution trace of form (/,_,_). We also show the soundness of the abstract
execution trace in Appendix.

Lemma 4.1 (Soundness of the Abstract Execution Trace). Given a program c, we have:

Vig,1eTe= (1,)€€ . {c,To) =" (skip, To+T) NEET
= Je=(I,_,) e (LxDCT x L) . €€ abstrace(c)

17

This lemma is proved formally in Lemma [E.T]in Appendix [E]
For every labeled variable in program c, x! € LV, there is a unique abstract event in program’s abstract
execution trace €€ abstrace(c) of form (I,_,).

Lemma 4.2 (Uniqueness of the Abstract Execution Trace). Given a program c, we have:

V1o, 71€T,e=(1,_,_) €& . {c,To) =" (skip, To+T) NEET
= Ae=(l, ,)e(LxDCT xL). €€ abstrace(c)

This lemma and proof is also formalized in Lemma [E.3|in Appendix [E]
Then, we build the edge for ¢’s abstract control flow graph as follos,

absE(c) ={(l1,dc,)|(l,dc, 1) € abstrace(c)}

Abstract Control Flow Graph With the vertices absV(c) and edges absE(c) ready, we construct
the abstract control flow graph, formally defined in Definition 23]

Definition 23 (Abstract Control Flow Graph). Given a program c, with its abstract control flow
abstrace(c) its abstract control flow graph absG(c) = (absV(c), absE(c), absW(c)) is defined as fol-
lows,

absE(c) ={(l;,dc, b)|(l1,dc, o) € abstrace(c)},

absV(c) = labels(c) U {lgy}

absl(c) = {(I, w) e L x EXPR(EMBECST)}.

Notice we also define the absW(c) in this graph without giving an actual value. This absW(c) is the
set of weight for every label. The weight is a symbolic expression over the symbolic constant, which
is the estimated upper bound on the number of visiting time for every control location through the
reachability bound analysis as follows.

Example Let us look at the two-round example, its generated abstract control flow graph is shown
as in Figure b). For example, the edge (0,a < 0,1) on the top, tells us the command [a — 019 is
executed with next continuation location 1, where the command [j — k]1 will be executed next. The
constraint a < 0 is a difference constraint, generated by abstracting from the assignment command
a — 0, representing that value of a is less than or equals to 0 after location 0 before executing command
at line 1. The difference constraint is an inequality relation between, the left-hand side of the inequality
talks about the variable before the execution and the right-hand side ascribes those after the execution.
Look at the a < a+ x on the edge 5 to 2, which describes the execution of the command at line 5,
which is an assignment a = a+ x. The a on the left side of a < a + x represents the value of a after
the assignment, while the right-hand side a stores the value before the assignment. Also, we have
while loop, which is a circle 2 — 4 — 5 — 2 in Figure f(b). Please also look at the edge from 3 to 4,
which talks about the query! The x < Q,, describes the execution of a query request (the command at
line 3), the query results stored in x is bounded by Q,;. Q,, is the maximal value for query requesting
result from the database DB. top means there is no assignment executed, for example, we have the
difference constraint T on the edge 2 to 6, means at line 2, there is no assignment (it is a testing guard
j >0.) The same way for the rest edges’ constructions.

18

la—01%[j — k]
while [j>0]* do
([x«—query(x[j])]s;
[j—j-1]%
l[a—x+ a]S);

[l — query(y[k] * a)]e

(a) (b) (©)
Figure 4: (a) The same towRounds(k) program as Figure ?? (b) The abstract control flow graph for
towRounds(k) (c) The abstract control flow graph with the reachability bound for towRounds (k).

4.3.2 Edge Estimation with Interprocedure Call

We show how to estimate the directed edges in the static analysis dependency graph. We develop a
variant of data flow analysis, called Feasible Data-Flow Generation, which considers both the control
flow and data flow and is a sound approximation of the edges in the execution based dependency graph.

Also, worth to mention, we use the result of reaching definition on the abstract control flow graph
in feasible data-flow generation to have a more precise approximation. Let us see a simple example, a
program [x = 0]'; [x = 2]%; [y = x + 1]3. The standard data flow analysis tells us that both the labeled
variable x' and x2 may flow to y, which will result in an unnecessary edge (x!,y3). The result of
reaching definition can help us eliminate this kind of edge by telling us, at line 3, only variable x? is
reachable.

In the first step, it performs the standard reaching definition analysis given a program c, on every
label in absV(c). This step generates set of all the reachable variables at location of label [in the
program c. The RD(/, ¢) represent the analysis result, which is the set of reachable labeled variables
in program c at the location of label I. For every labelled variable x! in this set, the value assigned
to that variable in the assignment command associated to that label is reachable at the entry point
of executing the command of label I. The block, is either the command of the form of assignment,
skip, or a test of the form of [b] l, denoted by blocks(c) the set of all the blocks in program c, where
blocks: @ — P(C U [b]"). Then it generates the set of feasible data-flow between labeled variables with
detail in Definition based on RD(/, ¢) for every label in a program c and its blocks blocks.

The details are as follows.

Reaching definition analysis A block is either the command of the form of assignment, skip, or test
of the form of [b]*.

The operator blk : € — blocks gives all the blocks in program c.

Set ? to be undefined:

The operator kill: blocks — P(VAR x £ U {2}) produces the set of labelled variables of assignment
destroyed by the block.

The operator gen: blocks — P(VAR x £ U {2}) generates the set of labelled variables generated by the
block.

The operator in(l), out(l): L — LV uU{? for every block in program c is defined as follows,

in() ={|x'elV,Al=absinit(c)}ufout)||(l',_, 1) € absE(c) Al #absinit(c)}
out(l) =genBHulin()\kill(B"}

computing in(l) and out(l) for every B! € blocks(c), and repeating these two steps until the iz () and
out(l) are stabilized for every Bl e blocks(c) We use RD(/, ¢) to represent denote the stabilized result

19

of in(l) at label [in program c.
The stabilized in(l) and out(l) for program c, as well as RD(, ¢), is computed by the standard worklist
algorithm with detail as below.

1. initial in[l]=out[1]=@
2. initial in[entry label] = @
3. initialize a work queue, contains all the blocks in C

4. while IWI 1= 0
poplin W
old = out[l]
in(1) = out(1) where (I’,_, 1) € absE(c)
out(l) = gen(b") U (in(1) - kill(b?)) where b in blk(c)
if (old != out(l)) W=W u {I'| (11"} in (,_,) € absE(c)}
end while

Feasible Data-Flow Generation by using the results of Reaching definition analysis results, specif-
ically RD(!, ¢) for every label in a program c, we refine the vertices and edges in the absG graph by
generating the set of feasible data-flow between labeled variables as follows,

Definition 24 (Feasible Data-Flow). Given a program c and two labeled variables x', ¥/ in this
program, £lowsTo(x!, y/,c) is

flowsTo(x!, 3/, [x — el}) 2 (b yh eyl xhly e FV(e) Ayl e RD(, [x — e]h)}
flowsTo(x, y/, [x — queryw)]) 2 (!, /) e ((y', xhly e FV@W) Ay € RD(L, [x — query ()])}
flowsTo(xi,yj,[skip]l) =@
flowsTo(x!, y/, if ([b]!,c1,c2)) 2 flowsTo(x!,y/,c1) v £lowsTo(x!, y/, c2)
vxh, yl) e (e, y))lx e FV(b) A xt € RD(, if (b1}, c1,¢0)) A yd €LV(cr)
vx, yl) e {(x, y))lx e FV(b) A xt € RD(, if (b1}, c1,¢0)) A yd €LV (cp)
flowsTo(x!,y/, while [b]' docy) 2 flowsTo(x!,y/,cp)v
(xt, yhy e f(xt, y7)|x e FV(b) A x! € RD(I, while [b]! do cy) A yJ € LV(cy)

flowsTo(xi,yj, C1;C2) £ flowsTo(xi,yj,)V flowsTo(xi,yj, c2)
[fun]l:x(r,xl,...,xn)::c @
[x— call (frer,...em)]’ 2 flowsTo(x!, y, [x; — e;] ") v £lowsTo(x!, y/, [¢*"]') v £1owsTo(x! y/, [x — rlr |)

/\f(rl’,xl,...,xn)::ceRD(l,c)

We prove that this Feasible Data-Flow relation is a sound approximation of the Variable May-
Dependency relation over labeled variables for every program, in Appendix [D}

Edges Estimation Then we define the estimated directed edges between vertices (x{, wr) and (xg , Wo)

where x{, xg € LV(c), as a set of triples Epyog(c) € P(LV x Ay x £LV) indicating a directed edge from
the first vertex to the second one in each pair as follows,

. i r Tn
Eprogo(c)é{(X{»W,X£)€L\7xﬂinxﬁ\7 xi’x2EH‘\/(C)AanEN’ZII’W’Zn i }

flowsTo(x',2,",¢) A--- AflowsTo(z,,)/, c)

The weight for every edge will be computed as next step in Section[d.3.3] We prove that this estimated
directed edge set Eprog(c) is a sound approximation of the edge set in ¢’s Execution-Based Dependency
Graph in Appendix

20

Example Still looking at the Figure 3(c) in main paper, and taking the edge (1%, a®) for example. By
flowsTo(l% a°, ¢), we can see a is used directly in the query expression y[k] * a, in the assignment
command [/ — query(y[k] *)] !ie., ae FV(y[k] * a). Also, from the Reaching definition analysis,
we know a® € RD(6, fwo — round). Then we have flowsTo(I%, a°, ¢) and construct the edge (1%, a®).
And same way for constructing the rest edges. Also, the edge (x2, j°) in the same graph represents the
control flow, caught by our £1lowsTo relation.

4.3.3 Weight Estimation via Path Sensitive Reachability Bound Analysis

In order to estimate weight for every vertex in the static analysis dependency graph(Vprog(c)), we want
to find out the upper bound on the number of times the labeled command (uniquely associated with a
vertex in Vprog(c)) may be executed when running the program. This information can be obtained by
computing the reachability bound for every vertex in the abstract control flow graph (absW(c)), because
the vertices in the two graph share the same unique label, the line number. We can easily show that
the reachability bound on one vertex of the abstract control flow graph is also the upper bound for the
corresponding vertex in the static analysis dependency graph, both vertices share the same unique line
number.

We perform the symbolic reachability bound analysis on the abstract control flow graph, through
the edges in absG(c), which correspond to ¢’s abstract transition between labels. We infer the invariant
for every variable, and compute the transition closure for every abstract transition. By solving the
closure with the invariants of variables involved in this closure for every transition, we compute the
symbolic reachability bound of every commands corresponding to this transition. Specifically, this
analysis can be performed in four steps: Variable Modification Tracking, Local Bounds Computation,
Invariant Inference and Closure Generation, and Reachability Bound Computation, with details as
follows.

Variable Modification Tracking Identify the abstract events where each variable is increased,
decreased and reset:

inc: VAR — P(€) the set of the abstract events where the variable increase.

inc(x) = {(¢,0)| €= (L, I',x' < x+ v)}

re: VAR — P(e) The set of the abstract events where the variable is reset.

dec: VAR — P(€) The set of abstract events where the variable decrease.

Incr(v)®2 Y {Tclosure(€) x v}

(€,c)einc(v)

Local Bounds Given a program ¢ with its abstract control flow graph absG(c) = (absV, absE)
Local Bounds Computation: locb :é— VAR USMBECST.

locb(€) 21 €¢ SCC(absG(c))
locb(€) £ (x, v) €€ SCC(absG(c)Acedec(x)ne=(, ,x' <x—v)
locb(€) £ (x,max(dec(x))) €€ SCC(absG(c))A ¢ Urevagdec(x)A ¢ SCC(absG(c) \ dec(x))

The first case is straightforward. Since variable’s visiting time outside of any while loop is at most 1,
we do not need to analyze the visiting times of every node in the graph from phase 1. The second and
third step is guaranteed by the Discussion on Soundness in Section 4 of [2]. Then soundness proof is in
Lemma|E.2]in Appendix [E]

21

Invariant Inference and Closure Generation Then, computing the bound invariants for variables
and the transition closures for abstract events:

Vinvar : VARUSMBCST — EXPR(SMBCST)

Tclosure :6— EXPR(SMBECST)

EXPR(EMBEST) is symbolic expression over SMBCST, which is a subset of arithmetic expressions
over N with input variables and . We use A;, denotes the arithmetic expression over the symbolic
variables, (i.e., N with input variables and). Then, the symbolic invariant for each variable as well as
the symbolic transition closure for each transition is calculated as follows:

Vinvar(x) 2c¢ ce SMBCST
Vinvar(x) 2 Incr(v)+max({Vinvar(a)+c|(t,a,c) ere(x)}) c¢&SMBECST

Definition 25.

Tclosure(g) 2 xlv
locb(€) = (x, v) € SMBCST x N
Tclosure(g‘) £ (Incr(x) + > Tclosure(g,) x max(Vinvar(y) + v,0)/v

al
(€ ,y,V)ere(x)

locb(€) = (x, V) A x ¢ SMBECST

Improved Variable Modification Tracking Instead of just identifying the abstract events where
each variable is reset, this improvement identifies the chain of the events where a given variable is reset
by the variables of the abstract events through the chain.

rechain: VAR — P(P(€)) The set of the chain of abstract events where the variable is reset through
the chain.

Improved Invariant Inference and Closure Generation Then, computing the bound invariants for
variables and the transition closures for abstract events:

Vinvar : VARUSMBECST — Ain

Tclosure:€— Ajy,

Then, the symbolic invariant for each variable as well as the symbolic transition closure for each
transition is calculated as follows:

Vinvar(x) 2¢ ce SMBCST
Vinvar(x) £ Incr(v)+max({Vinvar(a)+c|(t,a,c) ere(x)}) c¢SMBCST

Definition 26.

Tclosure(g) £ xlv

locb(€) = (x, v) € SMBECST x N

Tclosure(g) £ (> Incr(x)
y€ly | cherechain(x),(l;,x,y,v,lx)ech}
al
+ Y (min(Tclosure(e)) x max(Vinvar(y) + Y v, O)))/v
cherechain(x) g,ECh (h,x,y,v,lb)ech

locb(€) = (x, V) A x ¢ SMBCST

wprog(xl) £ Tclosure(g)

22

Reachability Bound Computation Through the transition closure computed above, The weight of
every label in the program c’s abstract control flow graph, absG(c) = (absV, absE, absW) is computed
as the maximum over all the abstract events € absE heading out from this vertex, formally as follows.

absW £ {(l, w)eNxA;p|lw= max{Tclosure(g) | €€ abstrace(c)A €= (l,_,_)}}.

Example We perform the symbolic reachability bound analysis on the abstract control flow graph as
follows. We would like to generate the closure of every edge, which is an equality relation between
variables. Solving this closure gives us the reachability bound for this edge. With all the bound for all the
edges in the abstract control flow graph, we can calculate the weight for every vertex in this graph. For
example, we show the closure generated for the edge (4, j < j—1,5), Tclosure(4,5) = Vinvar(j). The
invariant for variable j, Vinvar(j) used here is Vinvar(j) = k * Tclosure(1,2), which is generated
by all the difference constraints involving j in the graph. Notice the k in Vinvar(j) comes from
considering both difference constraint j <= k from edge (1,2) and j <= j—1 from (4,5), which
intuitively reflects the while loop whose counter is set to k at the beginning and decreases by 1 at each
iteration. With all the closures for all the edges of the abstract control flow graph, we can solve them to
obtains the reachability bound of every edge. We decide the weight for every vertex in the abstract
control flow graph by using the bound of the edges which head out from this vertex, by taking the max
of the bound from these involving edges. For instance, By the constraint on the edge (4, j < j—1,5), we
get bound k for this edge. Then, we assign vertex 4 by reachability bound k, as in Figure[d(c). Another
interesting vertex is 2, which has more than one edge heading out from it, (2, T,3) and (2, T, 6). For the
weight for vertex 2, we choose the max between the bound k from (2, T,3) and 1 from (2, T,6). The
same way for the rest weights’ computation. We use absW(c) for the set of weights we just computed
for each label in the abstract control flow graph of c. The same way for the rest weights’ computation.

Vertex Weight Computation Then we compute the weight for each vertex in Vprog(c), as a set of
pairs mapping each vertex xlelV(o)toa symbolic expression over SMBCSET. Wprog(c) € P(LV x Ajip)
is formally computed as follows,

Vprog(€) 2 { (),) | x € Vprog(€) A (1, w) € absH(c)}.

We prove that this symbolic expression for x' € Vprog(€) is a sound upper bound of the weight for the
same vertex x! in Program’s execution-based dependency graph in Appendix [El The maximum visiting
times of x! over all execution traces of ¢ in Appendix

Theorem 4.1 (Soundness of the Vertex Weight Estimation). Given a program c with its program-based
dependency gmph Gprog = (Vprogr Eprog): Gtrace = (Virace Etrace), we have:

V(xl; wt) € Vtracer (xl» wp) € Vprog» Top € ‘TO(C); T, € ‘:r; veN.
(¢, 7o) =" (skip, To++T Y A(WP,Tp) Je v = w;(T) <V

Example Now let’s go back to the Program-Based Dependency Graph which we aim to build for
approximating the Execution-Based Dependency graph for two-round example, as in Figure ??(c).
Every vertex from Vprog(c) in this graph corresponds to a labeled variable, for example a®, and this
label 5 is also a vertex 5 in the abstract control flow graph in Figure[d[(b). Then, it is straight forward,
that the reachability bound for the label 5, is also the maximum visiting times bound of the labeled
variable a®. So, we estimate the visiting time for labeled variable a° in Program-Based Dependency
Graph in Figruef{c) as k as well. The same way for the rest weights’ computation.

23

Edges Weight Computation Then we compute the weight for each edge in Eprog(c) computed
above,

Eprog(€) 2 {(x", w, y7) | (', w, Y1) € Bppog(€) A w = max{Tclosure(?:) | é€ abstrace(c)A é= (i, j)}}.

We prove that this symbolic expression w for edge (x!, w, y/) € Eprog () is a sound upper bound of the
weight for the same edge (x’, w’, y/) in Program’s execution-based dependency graph in Appendix

Theorem 4.2 (Soundness of the Edge Weight Estimation). Given a program c with its program-based
depeﬂdency g"aph Gprog = (Vprogr Eprog): Gtrace = (ViracerEtrace), we have:

V(x!, wy) € Werace, (x, Wp) € Wprog, TET . (¢, T) = (skip, To+T) Awp, T) e ¥V = < wy (1) s v

Example Now let’s go back to the Program-Based Dependency Graph which we aim to build for
approximating the Execution-Based Dependency graph for two-round example, as in Figure ??(c).

4.4 Program-Based Data Dependency Graph Generation

Finally we build the estimated data dependency graph based on the above program static analysis as
follows:

Gprog(c) = (Vprog(c), Eprog(c))

with Vprog(€) and Eprog(c) as computed in each steps above. This program-based graph program-based
graph has a similar topology structure as the Execution-Based Dependency Graph. It has the same
vertices but approximated edges and weights. It is formally defined in Definition
Definition 27 (Program-Based Dependency Graph). Given a program c, with its abstract weighted
controlﬂow graph absG(c) = (absV, absE, absW) and feasible data flow relation £1lowsTo(x', y/,¢) for
every x',y! € LV,, its Program-Based Weighted Data Dependency Graph Gprog(c) = (Vprog, Eprog), is
generated as follows,
{(xl, w)e LV x Ay xle LVeA (L w)e absW(c)}
{(xi, w,yj) €LV xAjnxLV |

x%,yJ € LV(c) AflowsTo(x!, y/,c) AdneN, 2!+, 2" €LVe . n= 0 A+ AflowsTo(z)", ¥/, c)

Vprog(c)

> 1>

Eprog(C)

AW = max{Tclosure(g) | e abstrace(c)A 6= (i,_,j)}}.

4.5 Adaptivity Upper Bound Computation

This phase computes the adaptivity upper bound for a program c.

With ¢’s program-based data dependency graph Gprog(c) approximated above, its adaptivity upper
bound is estimated as the maximum query length over all finite walks in WX (Gprog(c)) formally in
Definition [30] and computed in Algorithm|I]

Different from the finite walk on a program c’s execution based graph, the finite walk in Gprog(c)
doesn’t rely on initial trace. The occurrence times of every v; in k’s vertex sequence is bound by
an arithmetic expression w; where (v;, w;) € Vprog(€), is v;’s estimated weight. Formally defined as
follows.

Definition 28 (Finite Walk on Program-Based Dependency Graph (k)). .

Given a program c’s program-based dependency graph Gprog(¢) = (Vprog(€), Eprog(c)) a finite walk k
in Gyrace(€) is a sequence of edges (e ...e,—1) for which there is a sequence of vertices (vy,..., V)
such that:

24

e e; = (Vj, Wi, Vi+1) € Eprog(C) for every 1 < i < n, and occurrence times of e; smaller than w;.
* every vertex (vi, W;) € Vprog(C), Vi appears in (v, ..., Vy) at most w; times.
The length of k is the number of vertices in its vertex sequence, i.e., len(k) = a.

We abuse the notation WX (Gprog(c)) represents the walks over the program-based dependency
graph for c¢. Different from the walks on a program c’s execution based graph, k € WX (Girace(€)),
ke WiK(Gprog(c)) doesn’t rely on initial trace. The occurrence times of every v; in k’s vertex sequence
is bound by an arithmetic expression w; where (v, w;) € Vprog(€), is v;’s estimated weight. The length
of a finite walk k € WK (Gprog(c)) is an arithmetic expression as well, i.e., len(k) € A;p

Then the query length of a finite walk in Gprog(c) is an arithmetic expression as well as follows,

Definition 29 (Query Length of the Finite Walk on Program-Based Dependency Graph (1en?)). Given
a program ¢’s execution-based dependency graph Gprog(€) = (Vprog(€), Eprog(€), Worog(€), Qprog(€)), and
a finite walk ke WX (Gprog(©)), The query length of k, 1en(k) € A;p, is the number of vertices which
correspond to query variables in the vertices sequence of the this walk k (v1,...,vy,) as follows,

leni(k) =|(vIve (vy,...,un) AVEQV(O))I.

Definition 30 (Program-Based Adaptivity). .
Given a program ¢ and its program-based graph Gyrog(C) the program-based adaptivity for c is defined
as

Aprog(c) = max{leni(k) | k € WK (Gprog(c))}-

Based on our soundness of the program-based adaptivity, our program-based adaptivity is a sound
upper bound of its adaptivity in Definition 20}

Theorem 4.3 (Soundness of AdaptFun). For every program c, its program-based adaptivity is a sound
upper bound of its adaptivity.
Aprog(c) = Alc)

For Aprog(c) = A(c) comparing between function and arithmetic expression, we are specifically
comparing, VT €T . (A(c), 1) J. n = n = A(c)(1). To estimate a sound and precise upper bound on
adaptivity, we develop an adaptivity estimation algorithm called AdaptSearch (in Apdix Algorithm I),
which uses both the deep first search and breath first search strategy to find the walk. We also show that
the estimated adaptivity from our AdaptSearch is sound with respect to the program-based adaptivity.

Theorem 4.4 (Soundness of AdaptSearch). For every program c.
AdaptSearch(Gprog(€)) = Aprog(c).

The full details of all the soundness can be found in the appendix.

As indicated by our definition of prograpm-based adaptivity, the key point is to find the walks in
the program-based dependency graph. We develop some walk-finding algorithms, Algorithm T|and
Algorithm[2] which use both the deep first search and breath first search strategy.

By Definition [I8] this finite walk isn’t easy to find. We first discuss two challenges when we try to
find the walks in the dependency graph, and show that how we solve them using our algorithms.

Non-Termination Challenge: One naive walk finding method is to simply traverse on this graph
by decreasing the weight of every node by one after every visiting. However, this simple traversing
strategy leads to non-termination dilemma for most programs we are interested in. Specifically, this

25

whileSim(k) £

[— k)% 1 o
[x —query(x[0D] ; Xl
while [j>0]° do A
([— query(rlad]®; |
T 4 x3:1
[j—i-1] N
W (b)

Figure 5: (a) Simple While Loop Example, (b) The Program-Based Dependency Graph generated from
AdaptFun.

challenge comes from the weight of each vertex estimated in program’s Program-Based Dependency
Graph, which is not only a number but also can be a symbolic expression.

It is difficult to tell when to terminate the recursion when the domain of this symbolic expression
isn’t finite, some the walk may also be infinite. While, in most of our cases, the programs’ Program-
Based Dependency Graphs are having symbolic weights with infinite domains on vertices. Look at
the simple example in Figure[5] where k is the input variable from domain N. If we traverse on the
program-based dependency graph, and decrease the weight of x° (the weight k is symbolic) by one
after every visit, we will never terminate because we only know k € N.

To solve this non-termination challenge, we switch to another walk finding approach: we first find
a longest path in the program-based dependency graph and then approximate the walk with the path.
Through a simple deep first search algorithm, we find the longest weighted path as the dotted arrow in
Figure(5| x*:% — x!:1. Then, by summing up the weights on this path where the vertices has query
annotation 1, deep first search algorithm gives the adaptivity bound 1+ k. This is a the tight bound for
this program’s adaptivity.

Approximation Challenge: When we adopt a deep first strategy to search for the longest weighted
path, and then use the path to approximate the adaptivity. We find that this gives us over-approximation
to a large extend. This over-approximation could result in a co adaptivity upper bound on the program
with actual adaptivity 2. Look at the two-round example in overview, it is easy to find that the longest
weighted path is x3 :]f —a’: ’0‘ — 5 (1) with weighted query length 1+ k. If we use this path to
approximate a finite walk, and weight of each vertex as its visiting time, then it isn’t a qualified walk.
In the approximated walk, we have the vertices as x> — --- — x> — a® — --- — a® — [°. Because [°
can only be visited as most once by its weight, resulting in the restriction on the maximum visiting
time of x3, such that x> is only able to be visited at most once as well. However, x2 is visited k times
in this approximated walk. In order to have x> be visited k time, we need to go back to x3 on this
walk from either a® or [° for k time. This is impossible since there is no edge going back to x* in
Gprog(fwoRound). Obviously, its weighted query length, 1 + k, over approximates the adaptivity of
this example to a large extend, which supposed to be 2.

These challenges motivate us to design a walk search algorithm through a combination of deep
first search and breath first search strategy. This walk search algorithm consists of two components:
the path searching algorithm, AdaptSearch (in Algorithm [I) which search for a ’suitable’ path relying
on the strong connected components of the program based dependency graph, and AdaptSearch..(G)
(in Algorithm [2)) which approximates the path. The AdaptSearch as shown in Appendix Algorithm I,
takes our program-based dependency graph as input, and outputs the estimated adaptivity by two steps.
1. Process the input graph to a simplified graph 2. Perform the standard breath first search strategy to
find the longest weighted path on this simplified graph and return the length as adaptivity. The step 2 is

26

not interesting, we now discuss step 1. The input dependency graph may contain circle due to the while
loop, we simplify (shrank) the input graph by replacing every strong connected components(circle)
of the graph with, the vertex whose weight is the adaptivity of the SCC (a subgraph of the input one)
calculated by the AdaptSearch,... The SCC is found by using the Kosaraju’s algorithm. The details of
this algorithm is explained as follows.

Algorithm 1 Adaptivity Computation Algorithm (AdaptSearch)

Require: G = (V,E,W,Q) #{The program based dependency graph}
1: AdaptSearch(G):
2: init
q: empty queue.
adapt : the adaptivity of this graph initialize with 0.
3: Find all Strong Connected Components (SCC) in G: SCCy,---,SCC,,0<n < |V|,
4: for every SCC: SCC;, compute its Adaptivity SCCj:
5: adaptscc[SCC;i] = AdaptSearch,..(SCC;);
6: for every SCCj:
7
8
9

g.append(SCC;);
adaptim =0;
: while g isn’t empty:
10 s = ¢g.pop(); #{take the top SCC from head of queue}
11: adaptimp, = adaptinp; #{record the adaptivity of last level }
12: SCCpax; #{record the SCC with longest walk in this level }
13: for every different SCC, s’ connected by s by a directed edge from s:
14 if (adaptinp < adaptimp, +adaptsccls’]):
15: adaptimp = adaptinp, +adaptsce[s'l;
16: SCCnax = s'; #{update the SCC with longest walk in this level}
17: g.append(SCCpax);
18: adapt = max(adapt, adaptinp);

19: return adapt.

The Adaptivity Computation Algorithm (AdaptSearch) This algorithm first finds all the strong
connected components (SCC) of Gprog(c) using the Kosaraju’s algorithm in line:3. Every SCCy,---,SCCy
where 0 < n < [V| is a sub-graph of Gprog(c), where SCC; = (V4,E;,W;,Q;). Then, it computes the
adaptivity on every SCC in line:4-5 by Algorithm[2] We guarantee the soundness of the adaptivity on
SCC by Lemma with proof in Appendix |G| The Gprog(c) is then shrunk into an acyclic directed
graph where SCCy,---,SCC,, are vertices with their adaptivities as weights. For every (v;, v;) € E such
that v1 €V;, vj€V; and i # j, there is a edge (s;, s;) in this shrank graph.

Then, we use the standard breath first search strategy to find the longest weighted path on this shrank
graph and return the length as adaptivity.

We guarantee that the length of this longest weighted path is a sound computation of the adaptivity
for program c, and this longest weighted path a sound computation of the finite walk having the
longest query length on ¢’s program based dependency graph, in Theorem|[G.1]in Appendix. We also
guarantee the conditional completeness of the adaptivity computation for graphs under the case that c’s
Program-Based Dependency Graph Gprog(c) is acyclic directed in Theorem@in Appendix[l_q}

27

Al

gorithm 2 Adaptivity Computation Algorithm on SCC Graph

Require: G = (V,E,W,Q) #{An Strong Connected program based dependency Graph}

1
2

16:

17

18:
19:

20

: AdaptSearchg . (G):
. init
Tsce: EXPR(EMBECST), initialized 0, the Adaptivity of this SCC
init
visited: {0,1} List,
#{length |V|, initialize with 0 for every vertex, recording whether a vertex is visted. }
r: EXPR(EMBECST) List,
#{length |V|, initialize with Q(v) for every vertex, recording the adaptivity reaching each
vertex. }
flowcapacity: EXPR(EMBCST) List,
#{length |V|, initialize with oo for every vertex, recording the minimum weight when the walk
reaching that vertex, inside a cycle}
querynum: INT List,
#{length |V], initialize with Q(v) for every vertex, recording the query numbers when the path
reaching that vertex, inside a cycle}
if [V|]=1and |E|=0:
return Q(v)
def dfs(G,c,visited):
for every vertex v connected by a directed edge from c:
if visited[v] = false:
flowcapacity[v] = min(W(v),flowcapacitylc]);
querynum([v] = querynum|c] + Q(v);
r[v] = max(r[v],flowcapacity[v] x querynum(v]);
visited[v] =1;
dfs(G,v,visited);
else: #{There is a cycle finished }
r[v] = max(r[v],r[c] + min(W(v),flowcapacityl[c]) * (querynum(c] + Q(v)));
#{update the length of the longest walk reaching this vertex on this cycle}
return r|c]
: for every vertex v in V:
initialize the visited,r,flowcapacity,querynum;
Tsce = MaX(rgee,dfs(G,v,visited)) ;
: return rgcc

28

Adaptivity Computation Algorithm on SCC Graph (AdaptSearch,..(G)) This algorithm takes a
subgraph of the program-based dependency graph as input, to be precise, the input graph is SCC, and
the output is the adaptivity of this SCC. For an SCC containing only one vertex without any edge, it
returns the query annotation of this vertex as adaptivity. For SCC containing at least one edge, There
are three steps in this algorithm: 1. find out all the paths in the input SCC 2. Calculate the adaptivity of
every path using our designed adaptivity counting method. 3. Return the maximal adaptivity among all
the paths. The step 3 is trivial. Because our input graph is SCC, when we start traversing from a vertex,
we will finally go back to this vertex. The paths we find in step 1 are all those with the same starting
and ending vertex. The most interesting part is step 2. We discuss as follows.

This algorithm first check if an SCC contains only one vertex without any edge, as in line:4-5
in Algorithm [2| Again, for the SCC containing only one vertex without any edge, as in line:4-5 in
Algorithm [2] The adaptivity on this SCC is at most one if it is a query vertex, and zero otherwise.
AdaptSearchg..(G) return query annotation directly as in line:4-5.

For the SCC containing at least one edge, we compute the adaptivity for each path on the fly of
searching for the paths in the recursion algorithm dfs designed based on a deep first search strategy
from line: 6-16 in AdaptSearch,(G) in Algorithm 2]

As the Approximation Challenge discussed above, we want to guarantee the visiting time of each
vertex smaller than its weight and compute the adaptivity accurately, in the meantime guarantee the
algorithm termination. It uses a capacity limitation and special parameters to achieve it, specifically as
follows. Additionally, we are computing the query length rather than sum of the weights. We design a
deep first search strategy from line: 6-16 in Algorithm 2] with a capacity limitation and use special
parameter to compute the adaptivity.

In order to guarantee the termination, AdaptSearch, . (G) terminates the recursion if monitored a cycle,
as in line:8 and line: 14, through a boolean list visited. This guaranteed the termination and solved
the Challenge I1. discussed above.

In order to solve the Approximation Challenge, specifically guarantee the visiting times of each
vertex by its weight and compute the adaptivity accurately, we use a special parameter flowcapacity
to track the minimum weight along the path during the searching procedure, and a parameter querynum
to track the total number of vertices with query annotation 1 along the path in order to compute the
query length.

The detail steps of this dfs strategy from line: 3-16 in Algorithm 2] particularly from line: 7-15 on
how to use these two special parameters to resolve Approximation Challenge is described as follows.
flowcapacity is a list of symbolic expressions for every vertex, recording the minimum weight when
the path reaches that vertex, which is initialized by oco.

querynum is a list of integer with length |V|, which is initialized with Q(v) for every vertex. For
every vertex, it records the total query numbers when the path reaching this vertex.

We maintain the minimum weight for the flowcapacity, number of query vertices querynum

and update the adaptivity for this path r alone the path and update the adaptivity reaching this vertex,
when traversing on this graph, as in Algorithm [2] from line: 8-13. At line: 15 where this vertex is
visited, i.e., this path going back to its starting node, we only update the adaptivity r reaching this
vertex.
The updating operations during the traversing (in line: 11) and at the end of the traverse (in line:
15), specifically the flowcapacity([v] x querynum[v] computes the query length for this path. it
guarantees the visiting times of each vertex on the path reaching a vertex v is no more than the
maximum visiting it can be on a qualified walk, through flowcapacity[v], and in the same time
compute the query length instead of weighted length accurately through querynum(v]. In this way, we
resolve the Approximation Challenge and in the same time without losing the soundness,

29

We first initialize some parameters:
visited is initialized as a list of 0 for every vertex on this SCC, in order to guarantee the termination;
r is initialized as a list of integer with length |V, initialize with Q(v) for every vertex. The adaptivity
reaching each vertex.
flowcapacity a list of symbolic expressions for every vertex, recording the minimum weight when
the walk reaching that vertex, which is initialized by oco.
querynum is a list of integer with length |V|, which is initialized with Q(v) for every vertex. For every
vertex, in order to record the total query numbers when the walk reaches a vertex.
Then from line: 5-11, we record the minimum weight and number of query vertices alone the path and
update the adaptivity reaching this vertex, and then recursively dfs on all vertices heading out from this
vertex.
At line: 12 where this vertex is visited, we only update the adaptivity reaching this vertex and neither
recursion nor update the flowcapacity and querynum.
The updating operation in these two branches, specifically flowcapacity(v] x querynum(v] in line:
11 and line: 15 guarantees 1.the visiting times of each vertex on the walk reaching v is no more
than the maximum visiting it can be on this walk, through flowcapacity[v]. In this way, we
resolve the Approximation Challenge and in the same time without losing the soundness by using
flowcapacity|[v] x querynum[v] to compute the query length.
Notice here, another special operation we have in the second branch is Non-updating of querynum
and flowcapacity. This guarantees both the accuracy and the soundness, formally in Lemma[G.T]in
Appendix [G|

Now, we show an example illustrating how our two updating operations for adaptivity for each
path can guarantee both the accuracy and the soundness. Look at a Nested While Loop example
program in Figure @ We first search for a path: y® — y®, and compute the adaptivity for this path as k.
Notice here, another special operation we have in the second branch is Non-updating of querynum and
flowcapacity. This guarantees both the accuracy and the soundness. Specifically, if this vertex is
visited, it indicates that a cycle is monitored and the traversing on this cycle is finished by going back
to this vertex. When we continuously search for walks heading out of this vertex, the minimum weight
on this cycle does not affect the walks going out of this vertex that not pass this cycle. However, if we
keep recording the minimum weight, then we restrict the visiting times of vertices on a walk by using
the minimum weight of vertices not on this walk. Then, it is obviously that this leads to unsoundness. If
we update the flowcapacity[y®] as k after visiting y® the second time on this walk, and continuously
visit x?, then the flowcapacity(k] is updated as min(k, k2. So the visiting times of x is restricted
by k on the walk y® — 1% — x9. This restriction excludes the finite walk y% — y% — x® — x° where
y% and x° visited by k? times in the computation. However, the finite walk y® — y® — x% — x¥ where
35 is visited k times and x° k? times is a qualified walk, and exactly the longest walk we aim to find.
So, by Non-updating the flowcapacity after visiting y again, we guarantee that the visiting times og
vertices on every searched walk will not be restricted by weights not on this walk, i.e., the soundness.
In the last line of this dfs algorithm, line: 16, it returns the adaptivity heading out from its input vertex.
By applying this deep first search strategy on every vertex on this SCC, we compute the adaptivity of
this SCC by taking the maximum value over every vertex. The soundness is formally guaranteed in
Lemma|G.T]in Appendix [G]

Theorem 4.5 (Soundness of AdaptSearch). For every program c, given its Program-Based Dependency
Graph Gprog,
AdaptSearch(Gprog) = Aprog(Gprog)-

30

nestedWhileMultiVarRecAcross(k) £
i — K19 g % 0]
1, E :

X — query(y[0]) 5 &
{y—iueriémﬂz; xl:%ﬁy":{v\ lk D
vhile [i>0]° do "o

(17 —i-1% i H

o ;

— r In(x) + ; .
[;,hilzufj Z(g](7 :2) “O:ﬁ—xgig‘,....,' T D
(li=i-1% 4
[x — query(xn(y) + y(xD]°)) vt

(a) (b)

Figure 6: (a) Nested While Loop Example, (b) Execution-Based Dependency Graph, (¢) The Static
Program-Based Dependency graph.

Algorithm 3 Over-Approximated Adaptivity on SCC

Require: G = (V,E,W,Q) #{An Strong Connected Symbolic Weighted Directed Graph}
1: AdaptSearch
2: init

Tscc: the Adaptivity of this SCC
3: for every vertex vin V:
I'scet =W(w) = Q(v)
5: return r{c]

scc—naive (G) :

31

multipleRounds(k,c) £

[j— k)% —mYy
[ns < 0]% [cs — 03;
while [j>0]* do

(17 = =11% [a— query(n)]
7.

6-
)

[ns — updnscore(ns, a)]
[cs — updcscore(cs, a)]B;
[I —updI(,ns, cs)]g)

(a) (b)
Figure 7: (a) The simplified multiple rounds example (b) The program-based dependency graph from
AdaptFun

S Examples and Experimental Results

We present four examples, illustrating AdaptFun. Then we show our implementation of AdaptFun
and its experimental results on 18 examples including these four examples.

5.1 Examples

Example 5.1 (Multiple Rounds Algorithm). We look at an advanced adaptive data analysis algorithm
- multiple rounds algorithm, as in Figure[/(a). It takes the user input k which decides the number of
iterations. It starts from an initialized empty tracking list I, goes k rounds and at every round, tracking
list I is updated by a query result of query(x[I]). After r rounds, the algorithm returns the columns
of the hidden database D not specified in the tracking list I. We use functions updnscore(p, a),
updcscore(p, a),update(l, ns, cs) to simplify the complex update computations of Nscore, Cscore
and the tracking list I, which will not affect our analysis.

The interesting part here is the query asked in each iteration is not independent any more. The
query in one iteration j now depends on the tracking list I from its previous iteration j—1, which is
updated by the query result in the same iteration j — 1. The connection between queries from different
iterations, which means these queries are adaptively chosen according to our discussion in overview.

The program-based dependency graph is presented in Figure[/{b). Its execution-based dependency
graph has the same graph, except different weight so we do not show it again. We can simply replaces k
with a function wy which takes a trace and returns the value of k in this trace. The weight 1 is replaced
as a constant function wy taking whatever trace and returns 1 for the execution-based dependency
graph. For consistence, we use wy and wy for all the examples in this section. As the adaptivity
definition in our formal adaptivity model in Definition[20} there is a finite walk along the dashed arrows,
a®— 19> ns’" - ---— ns’, where every vertex is visited wy(to) times for an initial trace 1y € Ty(c).
There is one vertex a® visited wy.(to) times with query annotation 1, So we have the adaptivity with T
for this program as wi(7o).

Next, we show AdaptFun providing the tight upper bound for this example. If first finds a path
ab: ’f -1 :’g — ns” : K with three weighted vertices, and then AdaptSearch approximate this path to a
walk, in which a8, I°, ns” is visited k times. So the estimated adaptivity is k. We know for any initial
trace 19 where (T, k) e v and wi(to) = v. So k from AdaptFun is a tight bound.

Example 5.2 (Linear Regression Algorithm with Gradient Decent Optimization). The linear regression
algorithm with gradient decent Optimization works well in our AdaptfFun as well. Analysis Result:
Aprog(linearRegressionGD(k,rate)) =k

32

linearRegressionGD(k,rate) =
la—01%lc—01%[j —k]%

while [j>0]® do

([da — query (=2 * (y[1] - (x[0] x a+ ¢)) x (x[0)] %
[dc — query (-2« (y[1] - (x[0] x a+ C)))]S; €
[a— a-rate*dal® [c —c—ratexdc]’;

li—=i-11°)

(b)
(a)
Figure 8: (a) The linear regression algorithm (b) The program-based dependency graph from AdaptFun

This linear regression algorithm aims to model a linear relationship between a dependent variable
¥, and an independent variable x, y = a x x + ¢, specifically approximating the model parameter a
and c. In order to have a good approximation on the model parameter a and c, it sends query to a
training data set adaptively in every iteration. This training data set contains two columns (can extend
to higher dimensional data sets), first column is used as the observed value for the independent variable
x, second column is used as the observed label value for the dependent variable y. This algorithm is
written in our Query While language in Figure a) as linearRegressionGD(k,rate).

This linear regression algorithm starts from initializing the linear model parameters and the counter
variable, and then goes into the training iterations. In each iteration, it computes the differential value
w.r.t. parameter a and c respectively, through requesting two queries, query(—2# (y[1]—(x[0] x a+c)) x
(x[0])) and query(—2 = (y[1] — (x[0] x a+¢))) at line 4 and 5. Then, it uses these two differential values
stored in variable da and dc to update the linear model parameters a and c. Its the program-based
dependency graph is shown in Figure[§|(b). Its execution-based dependency graph share the same graph,
only needs to change the weight, k into wy and 1 for w, as we do in the previous example. In the
execution-based dependency graph, there are multiple walks having the same longest query length. For
example, the walk ¢’ — dc®:— ¢’ — --- — dc® along the dotted arrows, where each vertex is visited
wy (1) times for an initial trace 7o. There is actually other walks having the same query length k, the
walk a’ > da®—>a’'—---—da® along the dotted arrows, where each vertex is visited wy (7o) times.
But it doesn’t affect the adaptivity for this program, which is still the maximal query length wy(7¢)
with respect to initial trace 7¢. Also, AdaptFun, estimates the adaptivity k for this example. Similarly
as the multiple round example, we can show it is a tight bound.

Example 5.3 (Over-approximation Algorithm). The AdaptFun comes across an over-approximation
on the estimation due to its path-insensitive nature. It occurs when the control flow can be decided in a
particular way in front of conditional branches, while the static analysis fails to witness.

We show the over-approximation, in Figure[%a), we call it a multiple rounds odd iteration algorithm.
In this algorithm, at line 5 of every iteration, a query query(x[x]) based on previous query results
stored in x is asked by the analyst like in the multiple rounds strategy. The difference is that only the
query answers from the even iterations (i =0,2,---) are used in the query in line 7, query(x[In(y)]).
Because the execution trace only updates x using the query answers in even iterations, so the answers
Jfrom odd iterations do not affect the queries in even iterations. From the execution-based dependency
graph in Figure @b), we can see that the weight for the vertex y° is wy/2. a function which takes
any initial trace T, return the value of ki2 evaluated in 1. However, AdaptFun fails to realize
that odd iteration will always execute the then branch and even iteration means else branch, so
it considers both branches for every iteration. In this sense, the weight estimated for y° and p®
are both k as in Figure [Jc). As a result, AdaptFun estimates the longest walk from Figure [9c),

33

multipleRounds0dd(k) =

[j < k]% [x — query(x[0D]’;
while [j>0]2 do ([j«—j—l]s;
if ([j%2==0]"

[y = xix)% [p — x1x1]°;

[x — query(y(n(y))]’)

@ (b) ©

Figure 9: (a) The multiple rounds odd example (b) The execution-based dependency graph (c) The

program-based dependency graph graph from AdaptFun.
multipleRoundsSingle(k)

[j<—0]0;[z<—query(0)]1;[p<—0]2; P23 3 .0 . W
if([k:0]3,[y<—query(z)]4,[skip]5); J" 50
while [j#k]° do v I
([P — auery(xty +p)] 3 [j = j+1]° v 50
i£ ([#k-2]", [p—0]", [skip] ") o

(a) (b)

Figure 10: (a) The multi rounds single example (b) The execution-based dependency graph.

y° — x" — y° — .- — x" with each vertex visited k times, as the dotted arrows. And the adaptivity

computed is 1 +2 = k, instead of 1 + k.

Example 5.4 (Over-Defined Adaptivtiy Example). The program’s adaptivity in our formal model, in
Definition[201also comes across an over-approximation on the program’s intuitive adaptivity rounds. It
is resulted from difference between its weight calculation and the variable may-dependency definition.
It occurs when the weight is computed over the traces different from the traces used in witness the
variable may-dependency relation.

As the program in Figure [[0fa), which is a variant of the multiple rounds strategy, named
multipleRoundSingle(k) with input k. In this algorithm, at line 7 of every iteration, a query
query(xlyl + p) based on previous query results stored in p and y is asked by the analyst like in the
multiple rounds strategy. The difference is that only the query answers from the one single iterations
(j = k—2) are used in this query query(x[yl + p). Because the execution trace updates p using the
constant 0 for all the iterations where (j # k—2) at line 10 after the query request at line 7. In this
way, all the query answers stored in p will not be accessed in next query request at line 7 in the
iterations where (j # k—2). Only query answer at one single iteration where (j = k —2) will be used
in next query request query(x[yl + p) at line 7. So the adaptivity for this example is 2. However, our
adaptivity model fails to realize that there is only dependency relation between p’ and p’ in one single
iteration, not the others. As shown in the execution-based dependency graph in Figure [[OfD), there is
an edge from p’ to itself representing the existence of Variable May-Dependency from p’ on itself,
and the visiting times of labeled variable p7 is wi(To) with a initial trace 1. As a result, the walk with
the longest query length is p” — --- — p” — y* — z! with the vertex p” visited wi (1), as the dotted
arrows. The adaptivity based on this walk is 2 + w(ty), instead of 2. Though the AdaptFun is able to
give us 2+ k, as an accurate bound w.r.t this definition.

34

5.2 Implementation Results

We implemented AdaptFun as a tool which takes a labeled command as input and outputs an upper
bound on the program adaptivity and on the number of query requests. This implementation consists
of an abstract control flow graph generation, weight estimation (as presented in Section {.3.3)), edge
estimation (as presented in Section4.3.2)) in Ocaml, and the adaptivity computation algorithm shown
in Section 4.5]in Python. The OCaml program takes the labeled command as input and outputs the
program-based dependency graph, feeds into the python program and the python program provides the
adaptivity upper bound and the query number as the final output.

We evaluated this implementation on 17 example programs with the evaluation results shown in
Table[I] In this table, the first column is the name of each program. For each program c, the second
column is its intuitive adaptivity rounds, the third column is the A(c) we defined through our formal
semantic model above. In the third column, we use k represent the weight function wy (in program’s
execution-based dependency graph) which return value of variable k from an initial trace 7, same for
natural numbers. The last column is the output of the AdaptFun implementation, which consists of
two expressions. The first one is the upper bound for adaptivity and the second one is the upper bound
for the total number of query requests in the program.

The first 3 programs we evaluated are twoRoundsComplete(k), multipleRoundsComplete(k),
and the 1linearRegressionGD(k,rate) which we discussed in overview and above section. For
these examples, A(c) give the accurate adaptivity definition, simultaneously the AdaptFun outputs the
tight bounds for both of the adaptivity and query requesting number as expected. But for the forth
program multipleRound0dd(k), AdaptFun outputs an over-approximated upper bound 1+ 2 * k for
the A(c), which is consistent with our expectation as discussed in Example [5.3] The fifth program
is the evaluation results for the example in Example |5.4, where AdaptFun outputs the tight bound
for A(c) but A(c) is a loose definition of the program’s actual adaptivity rounds. The programs in the
table from seq() to nestedWhileMultiPathMultiVarRecAcross(k) are designed for testing the
programs under different possible situitions. These programs contain control dependency, data value
dependency, the nested while, dependency through multiple variables, dependency across nested loops,
and so on. Overall for these examples, our system gives both the accurate adaptivity definition and
adaptivity upper bound simultaneously through the dynamic analysis and static analysis. The full
programs are defined below from Example [5.5|to Example[5.20]

35

Table 1: Experimental results of AdaptFun implementation

Program ¢
twoRoundsComplete(k)
multipleRoundsComplete(k)
linearRegressionGD(k,rate)
multipleRounds0dd (k)
multipleRoundsSingle(k)
seq()
seqMultiVar()
ifValueDependency
ifControlDependency()
whileRec(k)
whileMultipleVar(k)
whileValueControlDependency (k)
whileMultiplePathValueControlDependency(k)
nestWhileValueDependency(k)
nestedWhileRecAcross(k)
nestedWhileMultiVarRecAcross(k)
nestedWhileMultiPathMultiVarRecAcross(k)

Example 5.5 (Complete Two Round Algorithm).

adaptivity rounds

la— 1%
. 2
[j— k]

while [j>0]° do
([— query(xik - 1- x1kD)]
[j—i-1]

twoRoundsComplete(k) £

5-
’

[a«—x::a]G);

|1 — Gsign(Tiep 111 x In

A(c)

4.
)

1+ali]
1-ali]

AdaptFun
2, k
k, k
k,2xk
1+2%k,1+2%k
2+k,2+k
4,4
4,4
3,3
3,3
1+k
1+2+k,2+3xk
1+2%k,2+2x%k
2+k,1+2xk
2+, 1+k+k2
142k, 1+ k+Kk?
1+k+k2, 2+ k+Kk?
1+k+Kk%2+k+k?

)l

Algorithm 4 A two-round analyst strategy for random data (The example in [[1])

Require: Mechanism M with a hidden data set D € {~1,+1}"*k+1) « DB,

for j € [k] do.

define g;(d) = d(j)-d(k) where d € {D(i) | i =0,-+,n} € {~1,+1}F*+1,

let a; :M(qj)

{In the line above, M computes approx. the exp. value of q; over D. So, a;j € [-1,+1].}
) where x € {~1,+1}k+1,

1+a;
1-a;
+1 ify=0
—1 otherwise

define gy (d) = d(k) - sign(X (k) X() - In

{In the line above, sign(y) = { -

let ap,; =M(qg11)

{In the line above, M computes approx. the exp. value of gy, over X. So, aj4 € [-1,+1].}

return aj, .
Ensure: aj.,€[-1,+1]

We have seen the two round algorithm above. We show the multiple-round algorithm, which is an

advanced algorithm.

Algorithm 5 A multi-round analyst strategy for random data base [1]]

Example 5.6 (Complete Multiple Round Algorithm). Require: Mechanism M with a hidden state X € [N]"
sampled u.a.r., control set size ¢
Define control dataset C ={0,1,---,c—1}
Initialize Nscore(i) =0 for i € [N], I = @ and Cscore(C(i)) =0 for i € [c]
for j e [k] do
let p =uniform(0,1)
define g(x) =bernoulli(p) .
define gc(x) =bernoulli(p) .
let a =M(q)
for i € [N] do
Nscore(i) = Nscore(i)+(a—-p)*(qi)—-p)ifi¢l
for i € [c] do
Cscore(C(i)) = Cscore(C(i)) + (a—p) * (gc(i) — p)
let I ={i|i € [N] A Nscore(i) > max(Cscore)}
leeD=D\I
return D.

multipleRoundsComplete(k,c,N) £
[j < N1% [es < 01%; [ns — 013 [— 013 [w — k1%
while [j>0]° do
([j —j- 1]6; [cs —0+cs]’;[ns—0+ ns]a);
while [w>0]° do
((w = w-11%[p —c]"; [q —]'* [a — query(x 1] s
[i — N]'; while [i>0]"® do
([i —i-11"5[es(i) — cs(i) + (a—p) = (- p)]
if (1< i)'8, [ns(i) — ns(i) + (a—p) = (g - p)] ", ns — ns(i)]zo));
[i2 — N1*%;
while [i2>0]%* do
([iz — i2-11%3; if ((ns(i2) > max(cs)|?4, [— i+ 1%, (I — 1]26)))

(a)
Figure 11: (a) The labeled program implementing the multiple round algorithm (b)The same program
in the SSA version

17,
’

37

Example 5.7 (Gradient Decent Optimization Algorithm). This example is the gradient decent algorithm
example is a generalization of the linear regression on a higher degree data relation. It uses gradient
decent algorithm to minimize the mean square loss function for a two-degree relation y = a; x xf +
ap x Xy + ¢ on the dataset of two feature columns and one indicator column.

gradientDecent(step,rate,t,n) £
[a1 — 01%
lap — 0]
[c —0]%
[j — step]
while [j>0]* do

([dal — query (-2 * (y[2] - (x[01% x a; + y[1] x az + ¢)) x (y[01))]
[da2 — query(~2 * (y[2] - (Y1012 x ay + x[1] x @z + ¢)) x (y[11)]%;
[dc — query (=2 * (y[2] — (x[01% x aj + x[1] x ap + C)))]s;

[a; — a1 —rate = dal]’;

lap — ap —rate * da2)®;

[c —c—rate* dc]g;

i —i-11")

It is easy to see, this approach can be generalized to the regression of a variety of relations in machine
learning area.

3-
’

5-
)

Example 5.8 (convex optimization Algorithm).
gradientDecent(step,rate,t,n) £
la— 1%
[j—step]’;
while [j>0Ad<t]® do
([d — query@» (x[1] - (x[0] x 1) = (~x10D)]
[x — x—rate * d]*;
[—i-1]";

[a«—x::a]G);

Example 5.9 (Sequence with Single Variable Linear Data Value Dependency).

z«—)([y+1]]2;

Analysis Result: Aprog(seq()) =4

Example 5.10 (Sequence with Multiple Variables Data Value Dependency).

[x — x101]";

[y —xlx+1]]
[z = xly+x1]%
[w—ylz+1]-x(y1]°

1-
seqMultiVar() £ ’

Analysis Result: Aprog(seqMultiVar()) =4

38

Example 5.11 (If with Data-Value Dependency Separated).
[z — query(y[0D]%;
[x — k/2];
ifValueDependency(k) 2 if ([x<0]?,
[y — query(x(2D]®,
[y — query(rion])
Analysis Result: Aprog(ifControlDependency()) =3

Example 5.12 (If with Data-Control Dependency Overlapped).
[z — query()([O])]O;
ifControlDependency() £ [x — query(y[z])] L
if ((x <012, [y — query(y[0] + y[1N]°, [y — query (x(0D]")
Analysis Result: Aprog(ifControlDependency()) =3
Example 5.13 (Simple While with Recursive Data-Value Dependency).
; 0
[j —&]5
[a — query()([O])]

whileRec(k) & (while [j>0]2 do

1-
)

[x — query(ylan];
[a—x+ a]4;
.. 115
li—i-1]°)
Analysis Results: Aprog(whileRec(k))=1+k
Example 5.14 (Simple While with Multi-Path Data-Value Dependency).
. 0
[j — k] 1
[x — query(x[OD];
. while [j>0]% do
hileMultiplePath(k) = , , 3
whileMultiplePath(k) ([J«—]—l];
i ([j%2==0]" [y — y1x1]", [w — x(x]");
[x— query()((ln(y)))]7)
Analysis Results: Aprog(whileMultiplePath(k)) =1+ 2 * k —> Over-Approximated
Example 5.15 (Simple While with Recursive Multiple-Variable Data-Value Dependency).
; 0
[j— k] 1
[x — query(y[0D] ;
[y — query(x[1D)]*

. . 3
while [j>0[| do
whileMultipleVar(k) = ([]. o E 1 |

[z — query(y(x +In()]’;

[x— query()([z])]ﬁ;

[y — query(x(zD])
Analysis Results: Aprog(whileMultipleVar(k))=1+2x*k

39

Example 5.16 (Simple While with Data-Value and Data-Control Dependency).

[— query(x[on]’;
[z — query(ylon]";
whileValueControlDependency() 4 while [x>0]* do ;
[x — query(x(2)];
[z — query()((x))]4)
Analysis Results: Aprog(whileValueControlDependency(k)) =1+2x*k
Example 5.17 (Simple While with MultiplePath Data-Value and Data-Control Dependency).
whileMultiplePathValueControlDependency(k) =
[x — query(k)]o;
1
[y =0l
while [x>0]? do

(i£ (> 0], [y — query(x12D)]", [w — query(x(9D]);
[x —x— 1]6);
[y — query(xnG))]’
Analysis Results: Aprog(whileMultiplePathValueControlDependency(k)) =2+k
Example 5.18 (Nested While with Recursive Data-Value Dependency).
i — k1%

[x — query(y[0])]
while [i>0]% do

(1= i-1%
N A ; 4.
nestWhileValueDependency(k) = [j— k]
[y — query(y(n(x)))]
while [j>0]° do
(i =717
[x— query()((ln(x)))]g))

1-
’

5-
’

Analysis Results: Aprog(nestWhileValueDependency(k)) =2+ k2

Example 5.19 (Nested While with Nested Recursive Data-Value Dependency Across Outer and Inner
Loop).

[i — k1%

[x — query(y[0D];

while [i>0]? do

(17— =15

NErPAC
nestedWhileRecAcross(k) = [= k] s
while [j>0]” do
.. 16

(li=i-15
[y —query(y(x) + }((1))]7);
[x— query()((ln(y)))]g)

40

Analysis Results: Aprog(nestedWhileRecAcross(k)) =1+2xk

Example 5.20 (Nested While with Nested Recursive Multiple Variable Data-Value Dependency Across
Outer and Inner Loop).

[i — k1%
[x — query(y[0D)]

[y — query(x(1D]*
while [i>0]3 do

li—i-11%
[j — k])
[y — query(y(n(x) + y)]’;
while [j>0]" do
([i —j-115
[x — query(y(n(y)) + x[x])]g))

1.
’

nestedWhileMultiVarRecAcross(k) =

Analysis Results: Aprog(nestedWhileMultiVarRecAcross(k)) =1+k+ k2
Reachability Bound Analysis Results:

weight for Variable: j of label 6 is: 0 + 0+ 1 *k *k

weight for Variable: y of label 7 is: 0 + 0 + 1 *k *k

weight for Variable: j of label 4 is: 0 + 1 *k

weight for Variable: i of label 3 is: 0 + 1 * k

weight for Variable: x of label 8 is: 0 + 1 *k

weight for Variable: x of label 1 is: 1

weight for Variable: i of label 0 is: 1

Example 5.21 (Nested While with MultiplePath and Nested Recursive Multiple Variable Data-Value
Dependency Across Outer and Inner Loop). We then show a more complex example with nested while
command and nested data-flow across the outer and inner while loop through multiple variables. This
example also contains the if command with data dependency occurred through the if guard.

nestedWhileMultiPathMultiVarRecAcross(k) £
li — k1%
[x — query(y[0])]

[y — query(x[1D)]*
while [i>0]3 do

(1= i-1%

[j— K]

if (x> 0%, [y — query(y(n(x) +)", [y — query(x(x)]®);
while [j>0]° do

([j —j-11"

[x — query(y(In(y)) + X[x])]“))

]'-
)

Analysis Results: Aprog(nestedWhileMultiPathMultiVarRecAcross(k))=1+k+ K2
Reachability Bound Analysis Results:

41

weight for Variable

weight for Variable:
weight for Variable:
weight for Variable:
weight for Variable:
weight for Variable:
weight for Variable:
weight for Variable:
weight for Variable:

:joflabel 10is: 0+0+ 1 *k *k
xoflabel 111is: 0+ 0+ 1*k *k
yoflabel 7is: 0+ 1 *k
yoflabel 8is: 0+ 1 *k
joflabel 5is: 0+ 1 *k
ioflabel 4is: 0+ 1 *k

y of label 2 is: 1

x of label 1 is: 1

iof label O is: 1

42

Appendices

A Proofs of Lemmas in Section 1, 2 and 3

Lemma A.1 (Uniqueness of the Labeled Variables). For every program c € C and every two labeled
variables such that x*, yj € LV(c), then x' # yj .

VeeCuxl,yl el . x',yl elV(c) = x' # y/.
Proof. -

Lemma A.2 (Trace Non-Decreasing). For every program c € C and traces 1,7' € T, if {c,T) —*
(skip,1'), then there exists a trace T" € T with 1++7" =1’

V1,7 €T,c.{c,T) =" (skip,7’y = " €T . 17" =7

Proof. Taking arbitrary trace 7 € T, by induction on program c, we have the following cases:

case: ¢ =[x —e]’
By the evaluation rule assn, we have ([x — al’,7) — (skip,T :: (x, [, v,)), for some v e N.
Picking ' =7 :: (x,1,v,) and 7" = [(x, [, v, #)], it is obvious that T++1" =7’

This case is proved.

case: ¢ =[x — query(u/)]l/

This case is proved in the same way as case: ¢ =[x — ell.

case: while [b]'doc
By the first rule applied to c, there are two cases:

sub-case: while-t

If the first rule applied to is while-t, we have

(while [b]'* do Cuw,T) — {Cy; while [b]'w do Cu,T (b 1y, true, o)) (1).

Let 7/, € T be the trace satisfying following execution:

(CoyT 22 (b, 1y, tTuE, o)) — (skip,7,)

By induction hypothesis on sub program c,, with starting trace 7 :: (b, [, true, ») and ending trace 7/,

we know there exist 7,, € T such that 7, = 7 :: (b, [, true, o)++7 .

Then we have the following execution continued from (1):

(while [b]'v do Cuw,T) — (Cy; while (bl do Cu, T (b 1y, true,e)) = (while [b]'v do Cu, T (b ly,true,)T) (2
By repeating the execution (1) and (2) until the program is evaluated into skip, with trace rﬂ, for
i=1,---,nn =1 in each iteration, we know in the i — th iteration, there exists Tfﬂ € T such that

TZ, = T(ui,_l)/ (b 1y, true,) + +fo,,

Then we have the following execution:

(while [B]" do ¢y, T) — (Cy; while [b]™ do ¢y, T :: (b, Ly, tTue, o)) 2> (while [b]' do c,,, 77y —While-f

(skip,rﬁ,’ = (b, {w,false,o)) and T’Lf,’ =1:(b, lw,true,o)HT%‘, ieeen(by Ly, true, o) Tl
Picking 1’/ = 7% :: (b, 1, false,s) and 7" = [(b, [y, true, ¢)] T, 1 -+ 2 (b, I, true, ¢)++7%, we have
T++1" =1

This case is proved.

sub-case: while-f
If the first rule applied to ¢ is while-f, we have
(while [b]'v do Cu,T) _ while-f (skip, T :: (b, Iy, false,*)), In this case, picking T’ = 7 :: (b, [, false, o)

43

and 7" =[(b, l,,,false,)], it is obvious that 7++7" =1,
This case is proved.

case: if ((b!,c;,cp)
This case is proved in the same way as case: ¢ = while [b]' doc.

case: ¢ = Cs1;Cs2
By the induction hypothesis on cs; and cg separately, we have this case proved. O

Corollary A.0.1. For every event and a trace T € T, if € € T, then there exist another event €' € & and
traces 11,72 € T such that T1++[€']++T2 = T with € and €' equivalent but may differ in their query value.

Veeé,17€T .ce1 = 1, 12€T, € €€ . (cece)AT +:[€]4T2 =T

Proof. By unfolding the aq €.4 £, we have the following cases:

case: 1 =[]
The hypothesis is false, this case is proved.

case: t=aq 1 ' Aaq’ =,5aq
Let t; =[] and £, = ¢/, by unfolding the list concatenation operation, we have:

h++laql++n=[0++laql++t' =1

Since aq’ =.q aq by the hypothesis, this case is proved.

case: t=aq 1 ' Aaq' #aqaq
By induction hypothesis on aq €.q ', we know:

31, t5,aq". s.t., (aq=agaq’) A t] ++[aq] ++1 =1
Let t; =aq'::] and t, = £}, by unfolding the list concatenation operation, we have:
n++lad’l++n=(aq =) ++laq’ | ++5=aq =t' =1t

Since aq” =,q aq by the hypothesis, this case is proved. O

44

B Soundness of AdaptFun
Theorem B.1 (Soundness of the AdaptFun). Given a program c, we have:
VT €T . (Aprog(0), T) Je n = n= A(c)(1)

Proof Summary:
construct the program-based graph Gprog(¢) = (Vprog) Eprog, Wprog) Qprog)
and trace-based graph Gtrace(c) = (Vtrace’ Etrace) wtrace» Qtrace)
1. prove the one-on-one mapping from Vprog t0 Virace, in Lemma
2. prove the total map from Etrace t0 Eprog, in Lemma
3. prove that the weight of every vertex in Gyrace 18 bounded by the weight of the same vertex in Gprog,
in Lemma |[B.3}
4. prove the one-on-one mapping from Qprog t0 Qtrace, iN Lemma
5. show every walk in WX (Gyrace) is bounded by a walk in WK (Gprog) of the same lenf.
6. get the conclusion that A(c) is bounded by the Aprog(c).

Proof. Given a program c¢, we construct its

program-based graph Gprog(€) = (Vprog) Eprog) Wprog) Qprog) by Deﬁnition

and trace-based graph Girace(€) = (Viraces Etracer Werace) Qtrace) by Definition
The parameter (c) for the components in the two graphs are omitted for concise.
According to the Definition [30]and Definition [20] it is sufficient to show:

V7 €T . (max{leni(k) | k€ WK (Gprog(c))},T) Je n = n=max{len(k)(r) | k € WK(Gyrace(€))}
Then it is sufficient to show that:
Vi € WK (Girace (€), 3kp € WK (Gprog(c)) . VT €T . 1len(ky), 7 le n = n=1en(k,(1))

Let ks € WK (Girace (€)) be an arbitrary walk in Grace(€), and 7 € T be arbitrary trace.
Then, let (ep1,---,epn-1) and (vy,---, vy) be the edges and vertices sequence for k(7).
By Lemma [C.I|and Lemma [C.2] we know

Vei€ky.ei=(vi,vit1) = Jep; . epi = (V;, Vit1) A epi € Eprog

Then we construct a walk k;, with an edge sequence (ep1, -+, epn-1)) With a vertices sequence
(v1,-+, vy) where ep; = (V;, Vi+1) € Eprog for all ey € (ep1,+++, epm-1))-
Let n € N such that (1en(ky), 7) | n, then, it is sufficient to show

kpp € Gprog(€) A m = Len(k,) (1)
To show kjp € Gprog(c), by Definition for finite walk, we know
Vi€ (v, vn), (Ui, Wi) € Werace(€) . visit((vy,---, V), (V1)) < wi(7)
By Lemma B.3] we know for every
Yv; € V1, , V), (Ui, Wi) € Wprog(€), i EN . w;, T) e nj = w;i(T) < nj (%)

Then, by Definition we know the occurrence times for every v; € (vy,:++,vy) is bound by the
arithmetic expression w; where (v;, w;) € Wprog ().

45

So we have k;, € WK (Gprog) proved.
In order to show n = len?(k,) (1), it is sufficient to show

Yv; € (01, Vn), (Vi, W;) € Wprog(€), (Ui, W) € Werace (€), i €N (w;, T) Yo 1
= Yy wi(1) < Yy n;
Qerace(€)(v)=1 Qprog(c)(vi)zl

By Lemma@ and Definition @ we know for every v;, Qerace (€) (Vi) = Qprog(€) (V;)

Then by (%), we know Yy LU; (1) < Y n;.
Qtrace(c)(vi)zl Qprog(c)(yi)zl

Then we have n = len%(k;)(t) proved.
This theorem is proved. 0

The following are the four lemmas used in the proof of Theorem [C.I] above, showing the corre-
spondence properties between the program based graph and trace based graph.

Lemma B.1 (One-on-One Mapping of vertices from Girace 10 Gprog). Given a program c with
its program-based graph Gprog(€) = (Vprog, Eprog, Wprog, Qprog) and trace-based graph Girace(c) =
(VeracesEtraces Werace Qtrace), then for every ve VAR xN, ve Virog if and only if v € Gyrace-

VceC,ve VARXN. Gprog(c) = (Vprog» Eprog: Wprog) Qprog) A Gtrace(€) = (Virace Etrace Werace) Qtrace)
= VEVprog < VE Virace

Proof. Proof Summary: Proving by Definition 27| and Definition [I7]

Taking arbitrary program c, by Definition[27|and Definition |17 we have

its program-based graph Gprog(€) = (Vprog) Eprog Wprog) Qprog)

and trace'based graph Gtrace(c) = (Vtrace’ Etrace) wtrace» Qtrace)-

By the two definitions, we also know Virace =LV, and Vprog = LV,.

Then we know Virace = Vprog, i.€., for arbitrary v € VAR xN, v € Vyrog <= 1 € Virace.]

Lemma B.2 (Mapping from Egdes of Girace t0 Gprog). Given a program c with its program-based

graph Gprog(c) = (Vprog’ Eprog) Wprog) Qprog) and trace-based graph Girace (€) = (Virace, Etrace) Werace Qtrace)s
then for every e = (v1, V2) € E¢race, there exists an edge €' = (v}, V}) € Eprog With vy = V] A U2 = 15,

VceC. Gprog(c) = (Vprog) Eprog) wprog» Qprog) A Gtrace (C) = (Vtracey Etrace’wtrace) Qtrace)
= Ve=(v1,02) €Etrace - €' € Eprog - e' = (v1, 1)

Proof. Proof Summary: Proving by Lemma|[C.I] Lemma Definition [27|and Definition

Taking arbitrary program c, by Definition [27)and Definition |7} we have

its program-based graph Gprog(€) = (Vprog) Eprogs Wprog) Qprog)

and trace-based graph Gtrace(c) = (Vtracev Etracer wtracer Qtrace)-

Taking arbitrary edge e = (xf, yj) € Etrace, it is sufficient to show (x, yf) € Eprog-

By Lemma we know x, yj € Vprog-

By definition of E¢yace, We know DEP., (%, yj ,C).

By Theorem we know dn e N, zf‘ R ,z,r,” elV,.n= OAflowsTo(x!, z{l ,C)N-+ -AflowsTo(z,r,",yj, c).
Then by definition of Eprog, we know (xf, yj) € Eprog. This Lemma is proved. J

Lemma B.3 (Weights are bounded). Given a program ¢ with its program-based graph Gprog(c) =

(VprogyEprog,wprog,Qprog) and trace-based graph Gyrace(€) = (Verace) Etraces Werace Qerace), for every
U € Virace, there is v € Vprog and Werace (V) < Wprog (V).

VceC. Gprog(c) = (Vprog; Eprog; wprog; Qprog) A Girace(€) = (Viraces Etraces Werace Qtrace)
= VVEVirace - VE Vprog A Werace (v) = wprog(l’)

46

VceC. Gprog(c) = (Vprog» Eprog» wprog, Qprog) A Gtrace(€) = (Virace Etrace Weracer Qtrace)
= V(x!, wy) € Werace, (X!, Wp) € Wprog, T, T €T, vEN . (W), T) e v = w (1) SV

Proof. Proof Summary: Proving by Definition Definition (17| and relying on the soundness of
Reachability Bound Analysis.

Taking arbitrary program c, by Definition[27and Definition [T7} we have

its program-based graph Gprog(€) = (Vprog) Eprog Wprog) Qprog)

and trace'based graph Gtrace(c) = (Vtrace’ Etrace) wtracey Qtrace)-

Taking arbitrary (x!, Wy) € Werace, (x!, Wp) € Wprog, 7,7' € T, satisfying:

(6, Ty =" (skip, T++7") A {wp,T) Ye v

By soundness of reachability bound analysis in Theorem ??, we know cnt(7/,l) < v

By deﬁnition we know w; (1) = cnt(7’,), then we have w,(7) < v and this is proved. O

Lemma B.4 (One-on-One Mapping for Query Vertices). Given a program c with its program-based

gmph Gprog(c) = .(Vprog; Eprongprogv Qprog) and trace'based gmph Gtrace (C) = (Vtracev Etrace) wtrace» Qtrace):
then for every (x',n) € VAR x N x {0,1}, (x*,) € Qerace if and only if (x', n) € Qprog.

VeeC, (xi,n) e VAR xN x {0,1} .

Gprog(c? = (Vprog» Eprog» wprc?gy Qprog) A Gtrace(c) = (VtracevEtrace) wtrace»Qtrace)
= (x',n) € Qtrace = (X', N) € Qprog

Proof. Proving by Definition [27} Definition

Taking arbitrary program c, by Definition[27and Definition [T7} we have

its program-based graph Gprog(€) = (Vprog) Eprog Wprog) Qprog)

and trace-based graph Gerace(€) = (Viraces Etrace Werace) Qerace)- _

By the two definitions, we also know Qtrace = Qprog, i-€., for arbitrary (x',n) € VAR x N x {0,1},
(xi» n) € Qirace < (xi; n) € Qprog-

This lemma is proved. [

47

C Soundness of AdaptFun with Dependency Graph and Adaptivity Ex-
tension

Theorem C.1 (Soundness of the AdaptFun). Given a program c, we have:
VT €T . (Aprog(0), 7) Je n = n= A(c)(7)

Proof. Given a program c, we construct its

program-based graph Gprog(€) = (Vprog, Eprog) by Deﬁnition

and trace-based graph Gerace(€) = (Verace, Etrace) by Definition[I7]

The parameter (c) for the components in the two graphs are omitted for concise.
According to the Definition [30]and Definition [20] it is sufficient to show:

V7 €T . (max{leni(k) | k€ WK (Gprog(c))},T) Je n = n=max{len(k)(1r) | k € WK(Gyrace(€))}
Then it is sufficient to show that:
Vk; € WK (Gerace(€), 3kp € WK (Gprog(c)) . VT €T . leni(kp), 7 Je n = n=len(k;(1))

Let ky € WK (Girace(€)) be an arbitrary walk in Grace(€), and 7 € T be arbitrary trace.
Then, let (ep1,---, epn-1)) and (v1,---, v,) be the edges and vertices sequence for k(7).
By Lemma [C.1]and Lemma [C.2] we know

— t _ p
Ve;€k;.e;= (v w;, Vi+1) = EIepi - €pi = (v, w; » Vit1) A €pi € Eprog

Then we construct a walk k, with an edge sequence (ep1,- -, epn-1)) With a vertices sequence
(v1,-++,vn) where ep; = (V;, Vjy1) € Eprog for all ep; € (ep1,-++, €pmn-1))-
Let n €N such that (1en(kp), 7) Y. 1, then, it is sufficient to show

kp € Gprog(c) A m = 1en(k,) ()
To show k) € Gprog(c), by Deﬁnition for finite walk, we know
Vvi€ -+, vn), Vi, Wi) €Werace(€) . visit((vy, -, vp), (V1)) < wi(7)
By Lemma [C.3] we know for every
Vv; € (v1,-+, Vn), (Ui, W;) € Vprog(C), ni EN . (w;, T) Yo n; = w;(1) < n; (%)

Then, by Definition we know the occurrence times for every v; € (vy,:--,V;) is bound by the
arithmetic expression w; where (v;, w;) € Vprog(C).
Also, by Lemma|C.4] we know for every

Vv € (v, Un), (Ui, Wi) € Vprog(€), ni EN . (w;, T) Je ni = w;i(T) < ;i (%)

Then, by Definition [2;81, we know the occurrence times for every v; € (v1,--+,vy) is bound by the
arithmetic expression w; where (v;, w;) € Vprog(c).

So we have k, € WK (Gprog) proved.

In order to show n = 1en?(k;)(7), it is sufficient to show

Vyi € (Uly'“ ’ U}’l)r (vi, wl) Ewprog(c)y (Ui) w;) € wtrace(c)»ni € N . <Wi,T> Ue nl
= Y w@m=s ¥ m
vielLV(c) v;€lLV(c)

48

Then by (%), weknow Y wi(t)< Y n;.
v;elLV(c) v;elLV(c)
Then we have n = 1len%(k;)(r) proved.

This theorem is proved.]

The following are the four lemmas used in the proof of Theorem |C.1|above, showing the corre-
spondence properties between the program based graph and trace based graph.

Lemma C.1 (One-on-One Mapping of vertices from Girace t0 Gprog). Given a program c with its
program-based graph Gprog(€) = (Vprog, Eprog) and trace-based graph Gerace(€) = (Verace Etrace), then
for every v € VAR XN, v € Vyrog if and only if v € Gerace.

VeeCuvelV. Gprog(€) = (Vprog, Eprog) A Gtrace(€) = (Virace Etrace)
= (V,_) € Vprog <= (1,) € Virace

Proof. Proof Summary: Proving by Definition 27 and Definition

Taking arbitrary program c, by Definition [27|and Definition [I'7] we have

its program-based graph Gprog(€) = (Vprog, Eprog)

and trace-based graph Girace(€) = (Virace) Etrace)-

By the two definitions, we know Viyace = {(v, w') | v €LV(c)} and Vorog = (v, wP) | ve€LV(c)}.

Then we know (v,_) € Vprog <= (V,_) € Virace-

This theorem is proved.]

Lemma C.2 (Mapping from Egdes of Girace 0 Gprog). Given a program c with its program-based
graph Gprog(¢) = (Vprog,Eprog) and trace-based graph Girace(¢) = (Virace)Etrace), then for every
e = (V1,_, V2) € Etrace, there exists an edge e' = (V},_, V) € Eprog With V1 = V] A V2 = V).

VceC. Gprog(c) = (Vprog» Eprog) A Girace(€) = (Virace Etrace)
= Ve=(v1,_,V2) €Etrace - 3€’ € Eprog . €' = (v1,_, 12)

Proof. Proof Summary: Proving by Lemma|[C.I| Lemma [D.I| Definition 27| and Definition

Taking arbitrary program c, by Definition[27and Definition [T7} we have

its program-based graph Gyrog(€) = (Vprog) Eprog)

and trace-based graph Girace(€) = (Viracer Etrace)-

Taking arbitrary edge e = (xt, yf) € Etrace, it 1S sufficient to show (i, yf) € Eprog.

By Lemma we know (x%,), (y/,)€ Vprog-

By definition of E;race, We know there is an initial trace 7 € Ty(c) and two witness traces 71,72 € T
such that DEP(xi,yj,T(),Tl,Tg,C).

By Theorem weknow dn eN, z{‘,--- ,z,r{‘ eLV,.n= OAflowsTo(x!, zlrl, C)A-- -/\flowsTo(z,r{‘, yj, c).
Then by definition of Epog, We know (x',_, y/) € Eprog. This Lemma is proved. OJ

Lemma C.3 (Vertex Weights are bounded). Given a program c with its program-based graph
Gprog(c) = (Vprog) Eprog) and trace-based gmph Gerace(€) = (Verace) Etrace), fOV every (xl» Wy) € Virace,
there is (x', Wp) € Vprog and wy, is a bound on w;.

VceC. Gprog(€) = (Vprog) Eprog) A Gtrace (€) = (Vtrace) Etrace) =

VY (x!, w') € Virace, (X!, WP) € Vprog, To € To(0), 7' € T, v €N . (¢, To) —* (skip, T++T") A (WP, T0) Yo v
= w!t)<v

49

Proof. Taking arbitrary program c, by Definition[27|and Definition [T7] we have

its program-based graph Gyrog(¢) = (Vprog) Eprog)

and trace-based graph Grace(€) = (Virace, Etrace)-

Taking arbitrary (x!, whe Virace, (x!, wP) e Vprog:To € To(c), 7’ € T, satisfying:

(¢, 7o) = (skip, To++T') A{wP,Tg) Je v

By soundness of reachability bound analysis in Theorem we know cnt(/,) < v

By deﬁnition we know w’(t) = cnt(7/, 1), then we have w!(7) < v and this is proved. OJ

Lemma C.4 (Edge Weights are bounded). Given a program c with its program-based graph Gprog(c) =
(Vprog: Eprog) and trace-based graph Girace(€) = (Virace,Etrace), for every e = (v1, wP, v2) € Etrace
and €' = (v1, W', v2) € Eprog, WP is a bound on w'.

VceC. Gprog(c) = (Vprog; Eprog) A Girace(€) = (Virace, Etrace) =
Y (v, wP, v2) € Egrace, (V1, W', V2) € Eprog, To € To(c), 7" € T, v €N (¢, 7o) —* (skip, To++T") A (WP, 70) Yo v
= wi(t)sv

Proof. Taking arbitrary program c, by Definition[27]and Definition[17] we have

its program-based graph Gprog(€) = (Vprog, Eprog)

and trace-based graph Girace(€) = (Virace) Etrace)-

Taking arbitrary e = (vy, WP, V2) € E¢race, € = (01, W, v2) € Eprog, and 7,7' € T, satisfying:

(¢, T) =" (skip, T+ T") A{WP,T) Je v

By soundness of reachability bound analysis in Theorem we know cnt(/,)< v

By deﬁnition we know w!(t) = cnt(1/,1), then we have w' (1) < v and this is proved. O

50

D Soundness of f1owsTo with Language and Adaptivity Extension

Theorem D.1 (DEP implies flowsTo). Given a program c, for all x',y! € LV, if there exist two
witness traces and an initial trace satisfying DEP(x', y/, 71,72, 70, €), then there exist z{‘ o,z €LV,
with n =0 such that flowsTo(x!, zlrl, A A flowsTo(zZ”,yf,)

in,yf €LV..311,72€ 7,70 € Tp(C) . DEP(xi,yj,Tl,Tg,To,C))
— (Elne N,z/' -,z €LV, . n = Ol\flowsTo(x",z{‘,c) A---AflowsTo(z,';",yj,c))

Proof Summary:
induction on c. Proved by induction hypothesis in if and while case, and cases analysis in seq case.

Proof. By induction on program c, we have the following cases:

case: ¢ = [skip]’
By LV in Definition 5] we know LV(c) = @ and the theorem is vacuously true.

case: c=[x — e]l

case: ¢ = [x — query(y)]'

This case is proved in the same way as case: ¢ = [x — e]’.
case: c=[fun]’ :f(rl',xl,...,xn) =c

This case is proved in the same way as case: ¢ =[x — ell.

case: ¢ = if ([b]’,c1,)

Let7,7" € 7,79 € Tp(c) be the two witness traces and initial trace satisfying DEP(x', y/, 71,72, 7o, if ([b] L c1,62)).
By may-dependency in Definition (16} let 7(€ To(c) be the initial trace satisfying,

(1) (V2" #x' . p(r0,2") # p(t}, 2")) and

(2) (if (1B}, c1, c2), 7o) —* ([skip]’, ToT) and

(3) (if (b)) c1,00), 7)) —* ([skip]l,76++r’) and

(4) Diffgeq(t,7,y)) # 0.

By the evaluation rules for if ([b] ! ,C1, C2), we have the two following cases on the evaluation in (2).
sub-case: (2) : ift

(if ()%, c1,¢2), 7o) _if-t (c1,7T0: (b, 1, true, o)) —* ([skip]l,ro (b, 1, true, o)++T1).

Accordingly, there are also two cases on the evaluation in (3) as follows,

subsub-case: (3) : if-f

(if ([b]l,cl,CZ),Tg) _if-f (2,72 (b,], false,»)) —* ([skip]l,rg i (b, 1, £alse, o). T))

By (1) and Inversion Lemma [D.1|3) of boolean expression evaluation, we know x € FV(b) and
x! e RD(, ¢).

By Diffgeq(r,7,3/) # @, we know 3/ € LV(c1) ULV(cy).

Then, by flowsTo in Deﬁnition we know flowsTo(x',)/, ¢), this case is proved.

subsub-case: (3) : if-t

(if (1D e1,),) =1 ey,) 22 (b, I true, o)) —* ([skip]’, 7} :: (b, [, true, o). 7))

To show : (Eln eN, z{‘,--- ,z,r{‘ eLV,.n=0A flowsTo(xi,z{I,)N+ A flowsTo(zf{‘,yj,c).

We first have the following induction hypothesis,

(IH) (Elrih,ri.h €T, Tino € Tolcr) . DEP(xi,yj,Tih,T;h,Tiho,Cl)) = (Eln eN, z{‘,m Z2 €LV, . n=

0 A flowsTo(x!, z,) A A flowsTo(z)", ¥/, cl)).

51

Constructing 7;p0 = 7o :: (b, [, true, o), 7;, =71 and 77, = 77.

By (1), we know Vz" # x,

(hD)(p(ro:: (b,], true,»),2z") = p(1y:: (b,], true,»),2")).

We also have two following evaluations:

(ih2) {c1, 70 :: (b, I, true, o)) —* ([skip]l,ro++11)

(ih3) (c1,7) = (b, I, true, »)) —* ([skip]’, 7)7})

By the determinism of evaluation, we have T = (b, [, true,)71 and 7/ = (b, [, true, ¢)++71.
By (4) and Diffgeq in Deﬁnition we then have

(ih4) Diffeeq((b, I, true, o)1y, (b, I, true,).:7), y/) =Diffgoeq(r1,7), 1)) # D
Then, by (ih1) - (ih4), we know

Arin, 1, €T, Tino € Tole) DEP(xi,yj,Tih,T;.h,riho, c1)).

Then, by induction hypothesis (IH), we know

neN,z',, 2 €LV, . n=0A flowsTo(x",z{‘,cl) A---AflowsTo(z)", ¥/, c1)
Then, by the £1owsTo in Definition[24] we have
neN,z',, 2 €LV, . n=0AflowsTo(x),z,',¢) A--- AflowsTo(z,", y/, c).

This case is proved.

sub-case: (2) : if-f
This sub-case is proved in exactly the same way as sub-case: (2) : if-t.

case: ¢ = while [b]l doc
This case is proved in exactly the same way as case: ¢ = if ([b]l, c1,Co).

case: c=Cy;02
Let 7,7’ € 7,79 € Ty (c) be the two witness traces and initial trace satisfying DEP(x!, yf, T1,T2,T0,C1;C2).
By may-dependency in Definition |16} let T € To(c) be the initial trace satisfying,
(1) (Vz" £ x" . p(10,2") = p(17,2")) and
(2) (c1;¢0,T0) —* ([Skip]l,T0++T) and
(3) {c1; €2, T) —* ([skip]l,16++r’) and
(4) Diffoeq(r,7,y)) # 0.
By the Evaluation rules for c;; c2, we have the following two concrete evaluations for (2) and (3):
(exel) {c1;¢2,To) —* (C2, Te+T1) —* ([skip]l,ro++11++12)
(exe2) (c1; 2, T) —* (€2, Ty++T)) —* ([skip]l,16++r’1++r’2)
where 7 =7;++72 and 7’ = 7 ++75. Then, we have two following sub-cases,
sub-case: Diffgeq(11,7),)/) # @
Then, by (exel), (exe2) and the determinism of the program evaluation, we have the two following
evaluations:
(ih1-2) {c1; ¢, T0) —* ([skip]l,ro++11);
(ih1-3) (c15 00, 7)) —* ([skip]’, 7))
Then, by (1), (ih1-2), (ih1-3) and the sub-case condition, according to the may-dependency in Defini-
tion[16] we know
DEP(xi,yj,Tl,Tll,T(), c1)

By induction hypothesis, we have

AneN,z}}, -,z €LV, . n20AflowsTo(x!, 2", 1) A+ AflowsTo(z,, ¥/, c1)
Then, by the £1owsTo in Definition [24] we have
neN,z,, 2z, €LV, . n=0AflowsTo(x), z,',¢) A--- AflowsTo(z,,)/, 0).

This case is proved.

52

sub-case: Diffgseq(11,7),)/) =@
By (4), we know

(ih2-4) Diffsoq(12,7h, y/) # @.
There are two cases,

subsub-case: (Vz' € £ . p(11,2") = p(1],2"))
Let 740 = To++71 and 7}, = 7++7}, we know the following by (1),
(ih2-1) (Vz" #x' . p(1o11,2") = p(Ty++T1,2"))
By (exel), (exe2) and the determinism of the program evaluation, we have the two following evalua-
tions:
(ih2-2) {2, Tino) = ([SkiP]IrTihO++T2>§
(ih2-3) (c2, T}, o) —* ([skip]’, 7}, o r+Th).
Then, by (ih2-1), (ih2-2), (ih2-3) and the (ih2-4), according to the may-dependency in Definition[16]
we know
DEP(xi,yj,Tg,T’z,Tiho,)

By induction hypothesis, we have

AneN,z]',--+, 2 €LV, . n=0AflowsTo(x, 2", c2) A--- AflowsTo(z,", ¥/, c2)
Then, by the £1owsTo in Definition[24] we have
dneN,z',, 2, €LV, . n=0AflowsTo(x), z,",¢) A--- AflowsTo(z,",)/, 0).

This case is proved.

subsub-case: —(Vz" €L . p(11,2") = p(1},2")

According to the Deﬁnition since Diff seq(rg,r’z, yf) # @, there are two cases,

Iseq(r2,)| = seq(t), y))|

Iseq(r2, y/)| # Iseq(t}, /)|

subsubsub-case: |seq(t2, y/)| = Iseq(Ts, ¥y

. According to the Definition[I3] and Diff Value Dependency Inversion LemmdD.6 we know there exist
two events (y, j, v1,@) € T2 and (y, j, v}, a') € 7).

Then we have the following two execution instances

(€2, To++T1) =" ([y — e/query(’l,U)]j,T0++T1++T;> —* (skip,ro++11++ri SR Ul,a)++T§) 2)
(€2, ToT)) =" [y — e/query(u/)]j,16++T'1++T’21) —* (skip,r{)++r’1++r’21 N RLE a’)++r’22), 3)

where e>/v, is the expression of the assignment command associated to the events (y, j, v1, @) and
(., v}, @) by the Inversion Lemma.
Let LVp; ¢+ be the set of all the variables z” on T’1++T’21 and T1++T% satisfying p(11++ré, z") # p(Ti++Tél, z").
Then, by the Diffgeq in Deﬁnition we know for every z" € L Vp;¢s, Diffseq(rlﬂri, T'1++T'21, z") £ @.
Then we know the following for every z” € L Vp;¢s,
(ih3-4) Vz" € LVpi¢¢ . Diffgeq(7,7',2") # @.
Then, by (1), (ih1-2), (ih1-3), and (ih3-4), according to the may-dependency in Definition[I6] we know
for every z" € L Vpj¢s,

DEP(x!, 2", 1,7, 70, c1)

By induction hypothesis, and the f1owsTo in Definition [24] we have

(cld-1) IneN, w{lr’, e wh e LV, .n=0AflowsTo(x’, w{lr’, N A flowsTo(wi{’r’,zr,c).
By the inversion Lemma we also know 3z" € (LVpiss U{X'}) . z€ FV(e)AT = L(T0++T1++T%)Z.

Then by the reaching definition Inversion Lemma we know z" € RD(j, ¢).
Then by flowsTo in Deﬁnition we know 3z" € (LVpisU{x'}) . flowsTo(z", yj, c2),1.e., flowsTo(z', yj, c).

53

Together with (cld-1), we conclude
neN,z',-, 2 €LV, . n=0AflowsTo(x', 2, ¢1) A--- AflowsTo(zy", ¥/,).
This case is proved.

subsubsub-case: |seq(T2, y/)| # |seq(Ts, ¥

According to the Definition [I3] and Diff Control Dependency Inversion Lemma[D.7] we know there
exist two testing events €, € T and —ej, € T/, satisfying

Vze FV(m (ep),3re L . flowsTo(z", ¥/, cy), i.e., flowsTo(z", ¥/, c).

In the same way as above by inversion on the testing event €, we get similar execution instance as
Equation[2]and [3]

Repeating the same proof steps under the two executions, similarly, by the expression evaluation
inversion Lemma|[D.2] we know

dz" € (LVpiss U (x')).ze FV(b)AT = L(T0++T1++T;)Z.

Then by the reaching definition Inversion Lemma|D.5] we know z" € RD(j, ¢).

Then by flowsTo in Deﬁnition we know 32" € (LVpi¢: U{x'}) . flowsTo(z", ¥/, cp), i.e., flowsTo(z", y/, c).
Then together with (cld-1), we know

neN,z',- 2l €LV, . n=20A flowsTo(xi,z?, c1) A---AflowsTo(z), ¥/, c).

This case is proved.

case: c=[x — call (x, el,...,en)]l
By the evaluation rule, this case is proved in the same way as case: ¢ = cy; 2 0
D.1 Inversion Lemmas and Helper Lemmas

The following are the inversion lemmas and helper lemmas used in the proof of Theorem ?? above,
showing the correspondence properties between the trace based semantics and the program analysis
results.

Arithmetic Inversions The Inversion Lemmas on expression evaluations.

Lemma D.1 (Expression Inversion). For all x' € LV, and 1,7' € T, and an expression e if Vz! €
LV/{x'} . p(T)z = p(1)z, and if

* e is an arithmetic expression a, and (t,a) 4 v and (t',a) J, V' with V' # v, then x is in the free
variables of a and i is the latest label for x in 1, i.e., x € VAR(a) and i = (1) x.

* e is a boolean expression b, and {1,b) |, v and (t',b) | V' with V' # v, then x is in the free
variables of b and i is the latest label for x in 1, i.e., x € VAR(D) and i = (1) x.

* eis a query expression vy, and (T,y) J4 @ and t',y) 4 &' with a #4 &', then x is in the free
variables of w and i is the latest label for x in 7, i.e., x€ VAR(Y) and i = (1) x.

Proof Summary:
To show x € VAR(a), by showing contradiction (V7,7’ in second hypothesis v = v) if x ¢ VAR(a).
To show i = (1), by showing contradiction (V7,7 in second hypothesis v=v") if j=u(r)x and i # j.

Proof. Take two arbitrary traces 7,7’ € T, and an expression e satisfying Vz/ € LV/{x’} . p(1)z = p(1))z,
we have the following three cases.

54

case: e is an arithmetic expression a

We have (t,b) ||, v and (7', b) |, v’ with v’ # v from the lemma hypothesis.

To show x € VAR(w) and i = (1) x:

Assuming x ¢ VAR(a), since vzl e Lv/{xi}. p(1)z = p(1)z, we know v = v/, which is contradicted to
vV # .

Then we know x € VAR(y).

Assuming j=u(T)xAi # j, by Vz/ e LV/{x'} . p(1)z = p(1)z, we know p(1)x = p(7))x, i.e.,

Vz/ eLV. p(1)z=p(1))z.

Then by the determination of the evaluation, we know v = v/, which is contradicted to v’ # v.

Then we know i = i(7) x.

case: e is a boolean expression b
This case is proved trivially in the same way as the case of the arithmetic expression.

case: e is a query expression
This case is proved trivially in the same way as the case of the arithmetic expression. O

Lemma D.2 (Expression Inversion Generalization). For all subset of the labelled variables L\p;ss <
LV and an expression e, if

* e is an arithmetic expression a, and for all zl e LV\ LVpiss there exist T,7' € T, v, v’ such that
pMz=pz, (1,a) Ug v and (t',a) U, V' with v# V', then 3x" € LVp;¢s such that x € FV (a)
and i =1(1)x.

VLVpiss €LV, a.
Vz/ e LV\LVpiss . AT, T €T, 0,0 . p(Mz=pazn(t,a) Jg v AT a) Yg UV AV # DV
— Jx' €LlVpiss . X FV(@)Ni=1(T)x

e e is a boolean expression b, and for all zJ € LV\LVpiss there exist T,7' € T,v,v' such that
p(@Mz=p()z, (1,b) Up v and (t',b) |} V' with v # V', then 3x' € LVp;¢s such that x € FV (b)
and i = (1) x.

V[L\/Diff clV,a.
Vz/ € LV\LVpi¢s . 37,7 € T, 0,0 . p(M)z=p(T)z AT, bY Up UAT DY Up V' AV £V
— JAx' €LVpiss . XEFV(D)ANI =1(T)x

* e is a query expression V¥, and for all z) € LV\ LVpiss there exist 7,7 € T,a,a' such that
p(Mz=p)z (1,¥) Jgaand T',y) U4 a' with a # ', then 3x" € LVp¢s such that x € FV ()
and i = (1) x.

Vﬂ—vDiff clV,a.
Vz! € LV\LVpiss . 37,7 € T, a0’ . p(W)z=pNz A (T,) UganT' yy Jga’' na#a
= dx' €l Vpiss . XE FV(Y) A i =1(T)x

Proof. Proof by showing contradiction and Applying Lemma [D.1] 0

Lemma D.3 (Expression Inversion Generalization-1II). For all subset of the labelled variables Diff c
LV, and x* € (LV\Diff), and an expression e, if

55

e e is an arithmetic expression a, and for all zJ € LV\Diff,7,7' € T, v,V such that p(1)z = p(1')z,
and (1,a) Jq v, and (1',a) V4 V' with v = V'; and for all zJ € LV/(Diff U {x'}) there exist
7,7 € T,0,V such that p(1)z = p(t))z, and (t,a) Y4 v, and {1',a) Y, V' with v # V', then
xe€e VAR(a) and i = 1(7)x.

VDiff cLV,x! € (LV\Diff),a.
Vz/ e LV\Diff, 7,7 € T, 0,0 . pMz=pa)zA T, a) ba VAT a) Yo V' AV =1
— Vz/ elLV/Diffu{x’}) . 31,7 €T, v,v . p(M)z=pNzA(T,a) Yo VAT @) Yo V AV V'
— xe VAR(@a@)Ni=1(T)x

e e is a boolean expression b, and for all zJ € LV\Diff,1,7' € T, v,V such that p(t)z=p()z A
(T,by Up v AT, b)Y Uy V' Av=0'; and for all 2/ e LV/(Diffu{x'}) . 31,7 € T, 0,0 . p(1)z =
ez AT, by Up AT DY Up V' AU # U then x€ VARMD) Ni=1(T)X

VDiff cLV,x' € (LV\Diff),b.
Vz/ e LV\Diff, 7,7 € T, 0,0 . p(Mz=pa")zA T, b) lp AT, D) Up V' AV =0
= Vz/ elLV/(Diffu{x’}) . 31,7 €T, v,v . p(M)z=p()z AT, bY Up VAT, DY Up V' AV #£ Y
— xe VARb)Ai=1(T)x

* e is a query expression v, and for all Diff c LV,x' € (LV\Diff),w such that for all z/ €
LV\Diff,7,7' € T,a,a’ . p(M)z=pa)zA{t,9) Ugan{t') lga Aa =4 a'; and for all
2 eLV/Diffu{x') . 31,7’ € T,a,a’ . p(Mz=p@zn (T,) lganit) lga' na #4
then xe VAR(W) A i = (1) x.

VDiff cLV,x! € (LV\Diff),y .
Vz/ e LV\Diff,7,7 € T,a,a’ . p(t)z=p(r)z A (T, ¥) lgand ,yylga na=4a
= Vz/ eLV/(Diffu{x'}) . 31,7 € T,a,a’ . p(M)z=pa)z AT, ¥) lganT) Uga' Aa#qa
= xe VARWW)ANi=1(T)x

!

Proof Summary:
To show x € VAR(a), by showing contradiction (V7,7’ in second hypothesis v = v') if x ¢ VAR(a).
To show i = (1), by showing contradiction (V7,7 in second hypothesis v=v") if j =u(r)x and i # j.

Proof. Taking an arbitrary expression e, we have the following three cases.

case: e is an arithmetic expression a

Taking an arbitrary set of labelled variables Diff c LV, x' € (LV\Diff) satisfies:

Vz/ e LV\Diff, 7,7 € T, 0,0 . p(m)z=p()zA(T,a) Yo VAT, a) o V' AU =1" (1)

and Vz/ e LV\ Diffu{x’}) .3, 7’ €T, v, v . p@z=pNzn(t,a) Jav AT, a) sV AV# DV (2),
Let 7,7" € T, v, V' be the two traces and values satisfies hypothesis (2).

To show: xe VAR(a@) A i =1(T)x:

Assuming x ¢ VAR(a), we know from the Inversion Lemma [D.T]of the arithmetic expression case,
vzl e LV\{x'}, 1,7 € T, 0,0 . p(t)z=p(tNzA(T,a) Y v AT, a) b V AV =V,

Then with the hypothesis (1), we know:

Vzl e LV\ Diffu{x’}), 7,7 €T, 0,0 . p(M)z=pa")zA(T,a) Yo VAT a) ba V' AU =1

This is contradicted to the hypothesis (2).

Then we know x € VAR(e).

Assuming j =1(t)xAi# j, by hypothesis (2) where Vz/ e LV\Diffuix}) . p(1)z = p(t')z, we know

56

p(mx=p)x, ie.,

Vz/ e LV\ (Diff) . p(1)z = p(7))z.

Then we have v’ = v by hypothesis (1), which is contradicted to v’ # v.
Then we know i = 1(7) x.

case: e is a boolean expression b
This case is proved trivially in the same way as the case of the arithmetic expression.

case: e is a query expression i
This case is proved trivially in the same way as the case of the arithmetic expression. 0

Lemma D.4 (Event Inversion). For all c € C, 19 € T,€ € Esuch that {c,T¢) =" (skip, To++T1), and
€€ Ty, if

e c€ &3 then either

— there exists 1) € T, c' € C, e such that
(¢, 1) =* ([x — ell; !, g+s1’y —8SSN (¢!, To++T)++[€]) =™ (skip, To++T1)
— or there exists Tll €T, c’ € C,w such that
(¢, 70y —* {[x — query()]]; ¢/, TosTh) = 4TV (¢!, Tg 4T+ [€]) —* (skip, To++T1)

o cc &% then either

— there exists T € T, ¢, ¢t, ¢, ¢ € C, b such that
(¢, 70y =" (if (), cpycp); ¢ TowsTh) =170, T0esT] 4 [€]) —=* (skip, To++T1)

— or there exists T’l €T, c,cy,c" €C,b such that

while-b

{c,T9) =" (while ([b]l,cw);c',ro++r'1) — (", 10++T)++[€]y =™ (skip, To++T1)

Proof Summary: trivially by induction on ¢ and enumerate all operational semantic rules.

Proof. Take arbitrary 7¢ € J, by induction on ¢, we have following cases:

case: ¢ =[x — e]’

By the evaluation rule assn, we have ([x — a]l,r> — (skip, T+[(x, [, V)]).
Then we know 71 = [(x, [, v)] and there is only 1 event (x, [, v) € 7;.

Then we have 7/ = [] and ¢’ = skip satisfying

(¢, To) —=* ([x — el’; ¢, 1g+7"y =B8N (¢! 701 [€]) —* (skip, To++T1).
This case is proved.

case: c =[x — query(w)]l
This case is proved trivially in the same way as case: ¢ = [x — e]’.

case: ¢ = Cs1;Cs2
This case is proved trivially by the induction hypothesis on cg; and ¢y separately, we have this case
proved.

57

case: while[b]'doc

If the rule applied to is while-t, we have:

(while [b)! do cy,T) — (Cw; while [b]! do cy, T+[(b, [, true)]) — (skip, T++71),

(b, 1, true) € €**s* and (b, [,true) € 7;.

Let 7/ =[], ¢ = skip and ¢” = ¢,; while [b]’ do ¢, we know that they satisfy

(¢, To) —* (while ([b)!, cy); ¢/, To+et)) =MD (" Tit i[€]) —* (skip, To+T1)

This case is proved.

If the rule applied to is while-f, we have

(while [b]} do ¢y, T) _ while-f (skip, T++[((b, [, false))]), (b, I, true) € €*°=*, and (b, [,true) € 1.
Let 7/ =[], ¢’ = skip and ¢” = skip, we know that they satisfy

(¢,70) —* (while (B!, ¢,); ¢, Torvt)) —WhIlET (o
This case is proved.

,TO++T’1++[(b, l,false)]) —* <Skip,T0++T1>

case: if ([bl', ¢, cr)
This case is proved in the same way as case: ¢ = [x — query(y)]’. O

Lemma D.5 (Reachable Varibale Inversion). For all c € C1,7' € T, if {¢,t) =™ (c',1"), and for all
x! € LV, such that 1(t")x = 1, then x' € RD(absinit(c),¢).

VYeeCr, T €T . (c,7) —" (c',T) = Vx'elLV,.1(r)x=1 = x' €RD(absinit(c),c)

Proof Summary: If a variable with the label which is the latest one in the trace, Then by the
environment definition, the value associated to this labelled variable is read from the trace.
Then this labelled variable must be reachable at the point of entry,, i.e., x! € RD(absinit(c),c).

Proof. Take arbitrary c € C, 7,7’ € T satisfying (c,7) —* (¢, 7’), and an arbitrary x’ € LV, satisfying
(thx=1.

By definition of ¢, we know 7’ has the form 77,++[(x, [, v)]++T}, for some 77,7, € T and v.

And the variable x doesn’t show up in all the events in T;].

Then, by the environment definition, we know: p(t')x = v, i.e., x*
absinit(c).

By the in(l) operator define in Section we know x/ is in the in(absinit(c) for prpgram c.
Since RD(absinit(c), ¢) is a stabilized closure of in(l) for ¢, we know x! € RD(absinit(c),c).

This lemma is proved. O

is reachable at the point of

Events and Dependency Inversions The Inversion Lemmas on may-dependency relation, trace and
event.

Lemma D.6 (Diff Value Dependency Inversion).

VeeC 11,12 T, x' elLV(c) . Diffseq(rl,rg,xi) QN Iseq(Tl,xi)I = Iseq(rz,xi)l
- Elel = (x» i)_»_) €T1,62= (x; i:_)_) €T . Diff(€1,€2)

Proof Summary, by unfolding the Difference Sequence Definition [I4]and Value Sequence Defini-
tion 131

Proof. Take arbitrary ce C,lett;,72 €7, x' € LV(c) be the traces and variable satisfying (o) Diffgeq(71,72, xb) #
@ A () |seq(r1, x')| = [seq(r2, x)|. . _
Then by Definition [14|and the assumptions (¢) and (%), we know |seq(t1, x")| = |seq(t2, x)| = 1.

58

By seq in Definition @ we know there is at least an event (x,i,_,_) €7; and (x,i,_,_) € T in order to
have |seq(r1,xi)| = Iseq(Tg,xi)l >1.

In order to show Diff(ey,€2), it is sufficient to a contradiction by assuming

(he) Ve = (x,i,_, JET,€2=(X,i,_,) ETo . Diff(e1,€2)

By seq in Definition [13[and (hc), we know every value v; in seq(rl,xi) and v, at the same index
position of seq(72, x!) are equivalent to each other.

Then we know Diffgeq(71,72, x') # @. This is contradicted to the hypothesis.

Then we know (hc) is false and this Lemma is proved. O

Lemma D.7 (Diff Control Dependency Inversion).

VceC1oeTo(c),11,72€ T, x!, ¥/ €LV(c) . DEP(x!, y/,71,72,70,¢) Alseq(t1, y)| # Iseq(ta, y/)|
= Jep=(b,i,1,8) €T, . "€, €T2AVZEFV(b),3l€ L . flowsTo(z}, ¥/, c)

Proof Summary:
Proving by using the Inversion Lemmas|[D.1] and [D.5] and the May-Dependency definition.

Proof. Take arbitrary c € C, let 79 € Ty(c), 71,72 € T, X, yf € LV(c) be the traces and variables satisfying
(0) DEP(x', y/,71,72,70,¢) A (%) Iseq(r1, y/)| # |seq(r2, y7)I.

To show (c1) Fep = (b,i,v,0) €11 . € €T2 A (c2) Vze FV(b),3le L . flowsTo(zl,yj,c)

Splitting the conjunction, there are two sub conclusions need to be proved:

Subproof of (c1) ey, = (b,i,v,®) €T) . T€p € T2:

To show (c1) it is sufficient to show a contradiction by assuming

(he) ~(Fep = (b,i,v,0) €T . €L E T2).

By (hc), we know there are two cases

(1) VeeTt, .e€ &3,

2)Vep=(b,i,v,e)ET] . €& To.

sub-case: (1) Vee1; .c€ 3™

By Event Inversion Lemma[D.4|on every € € 71, we know program ¢ has the following form

¢ = [skip|*;[x1 — e1/query(y1)]"; [skip]*;...;[skip]”, i.e., ¢ consists of only assignment and
skip commands.

Then by the May-Dependency in Deﬁnition and determinism of evaluation, we know V7, € Ty (c)
(c,70) —* ([skip]’, To+T1) A (c,Th) —* <[skip]l,;6++rz> = [seq(r1, /)| = Iseq(r2, y/)I.

This is contradicted to the condition (%) |seq(ty, /)| # Iseq(t2, y/)I.

sub-case: (2) Ve, = (b,i,v,0) €T . €p &£ T2

By Event Inversion Lemma[D.4|on every € € 71,

Since ey, ¢ T2, by the determinism of evaluation, we know the two executions are executing the same
program.

In the same way by the May-Dependency in Definition [16/and we know V1, € Ty(c)

(¢, To) —* ([skip]l,ro++rl) Nc,Tp) —* ([skip]l,16++12) = |seq(11, y/)| = [seq(r2, y9)I.

This is contradicted to the condition (%) |seq(t1, y/)| # [seq(T2, y/)I.

Then we have (hc) is false, and (c1) is proved.

Letep = (b, i,v,) € 71 be the testing event such that —ey € 75.

By the LV(c) in Definition [5, we know Vz € FV (b), either z is input variable, we have z'® € LV(c), or
z is assigned in ¢, we have Ar e N . 2" e LV(¢).

Let r be the label for every z € FV (b), we prove the second sub-conclusion (c2) as follows.
Subproof of Yz € FV(b),3l € £ . flowsTo(z}, y/,c)

59

By (0) and (%), we know there exists at least an event €y, = (y, j,_,_) such that €, € 71 or €y, € T5.
Without loss of generalization, we assume €, € 71 (The case of €y, ¢ 7 and €, € 7, will be proved as a
symmetric case of this assumption).

Without loss of generalization, let €}, be the testing event, and T}, T%, T?, Té, T% € T be traces such that
T1 =71+ [€plesTTesley]4et3, and T2 = T34 [€p] 4 T5.

Then by Inversion Lemma@ on €y, and €5, we have the following instance of the first execution in
Definition [16]

(¢, To) =™ (if ([b]l’”,ct,cf)/ while [b]% do cw;c§,10++r})

_.it-b / while-b ((cric'lef;c)(cw; while [b]" do cw;c’/[skip];c’),ro++T}++[€b]>

"y < eg/query(z//z)]j; c”,To++T} [eb]++rf)
_,assn/query «

“

, T()++Ti [€b] ++T%++ [Gy] > —* (Sklp, T()++Ti [Eb] ++T%++ [Ey] ++T313>

, Wwhere if ([b] lb, ct,cf)/ while [b)% do ¢y 1s the conditional command of the assignment commands
associated to the €}, by applying Inversion Lemma[D.4]on €},.

The notation (c;; ¢’/ cp; ')/ (c; while [b] Ib do cy; ¢’ I[skipl; c') represents:

In case of if ([b]%,c,, cf), if m3(ep) = true, we have the evaluation:

(if (D), cpycp)i) TreslE1)oeT) 1D o e] T e)

The same for case of if ([b]lb,ct,cf) with m3(€e,) = false, and case of while (bl do cw With
n3(ep) = true and m3(ep) = false.

By applying Inversion Lemma[D.4]on ¢}, and the command label consistency, we also have the instance
of second execution from Definition [16]as follows,

(0,16) f’* (if (.[b] lb,c[,cf)/ while [b]" do Cw;Cé,T6++T%>
_if-b / while-b ((cric'lcfic)(cw; while [b] b 4o cw;c’/[skip];c’),r(')HT;H[—'eb]) 5)

!
—* <[Sklp] ! T6++Té++[ﬁ€b]++1’%>

Then for every z € FV(b) with label r such that z" € LV(c), to show flowsTo(zr,yj, ¢), by Defini-
tion [24] it is sufficient to show:

in the case of while [b]% do Cw> yj eLV(cy) ;

in the case of if ([b]",cs,cp), ¥/ €LV(cy) or y/ € LV(cy) .

sub-case: if ([b], Ct, Cf) NT3(€p) = true
In this case, we have the following execution instances for executions i n Equation 4] and 4

(¢, To) —* (if ([bI", ¢y, cf);c’,ro++1%) _it-b (ct;c’,ro++ri++[€b]) —*([y < e2/query(1//2)]j;c”,TO++Ti++[eb]++T§)
ﬁassn/query <CH,T0++T%++[€b]++T%++[€y]> —* (Skip,T0++Ti++[6b]++T%++[€y]++T?>

% /- if- * .l
(e, Th)y =* (A (D), 1, cp); ¢ Theethy =10 (el ithicmep)) —* ([skip]’ 7)ethes[ep] oT2)

Then, we know T§++[ey]++7? corresponds to evaluation of ¢ ¢’ and T% corresponds to evaluation of
cr;c’ and ey ¢ T3

If €, generated from evaluation of ¢;, we know y/ € LV(c;) and this case is proved.

If €, generated from evaluation of ¢’, since €, ¢ T% and T% also contains evaluation of ¢'.

Then there must be another if or while command in ¢’ such that e, is generated in the first execution
but isn’t evaluated in the second one.

In that case, there is another 6‘2 € T% and —le’b € T% satisfying the same condition as €j,.

60

Then we can always choose the €}, be this €}, and choose 71,77,7},73,75 € T be traces such that

T1= T}H[eb]HT%H[ey]Hr?, and 7, = T;H[ﬁeb]Hrg.

and TL(z7++[e,]) N TL(13) = @.

Then, since —H—H_(T%++[€y]) N TI].(T%) = @, we know TT[I_(T§++[€y]) doesn’t contain any label of the program

c.

Then we know €y, isn’t generated from evaluating c’, i.e., it is generated by only executing c;.

Then we know yj eLV(cy).

This case is proved.

The sub-cases: if ([b]%,c;, c)Am3(€p) = false, while [b] b g0 cwA3(€p) = true, and while [b] b 4o ¢y A
m3(ep) = true are proved in the same way.

This Lemma is proved. 0

Lemma D.8 (While Loop Inversion). For every 1,17 € T,c,c1, ¢ € Cif {c,T) —* {(c1;¢2,T') and ¢; €¢ ¢,
then there must exist a while command in c; and c¢; must shows up in the body of that while
command, i.e., AN, b€ B, c,, € C . (while [b]! do cy) €c Ca A€y Ec Cyp-

V1,7 €T,c,01,00€C .
(¢, 1) =*{c1;¢0,T") = c1€ccp = AleN,beB,c, €C. (while bl docy) €c Ay € Cup

Proof Summary: trivially by induction on ¢ and enumerate all operational semantic rules.

Proof. Take arbitrary 7 € 7T, by induction on ¢, we have following cases:

case: c =[x — e]l
By the evaluation rule assn, we have ([x — all, Ty — (skip,7++[(x, 1, 1)]).
Since there doesn’t exist ¢, ¢; € € satisfying skip = ¢j; ¢z, this theorem is vacuously true.

case: ¢ =[x — query(w)]l
By the evaluation rule query, we have ([x — query()l},7) — (skip, 7+:[(x, [, @, v)]).
Since there doesn’t exist ¢, ¢o € € satisfying skip = ¢j; ¢, this theorem is vacuously true.

case: c= if ([bl',c1,)

By the evaluation rule query and if-f, and the label consistency, we know:
for all possible c;; and c¢; such that ¢, has the form ¢; = ¢41; ¢r2;

all possible cfy and cf such that ¢y has the form ¢ = cfy;¢p2,
cn€cnand cpy € cpo.

Then this theorem is vacuously true.

case: C = Cs1,Cs2
By label consistency, we know for every ci €¢ Cs1s ci ¢ Cs.
Then by the induction hypothesis on cg; and ¢, separately, we have this case proved.

case: while[b]'doc
By rule while-t, we have:

(while [b]’ do cy,T) — (cu; while [b]’ do ¢y, skip), T+[€])

If ¢, is a sequence command, let ¢; = ¢,; be the any possible command in this sequence, for all
possible c¢,; and ¢y such that ¢, has the form ¢, = cy1; Cu2-

Then we have ¢, = ¢y2; while [b]} do cw,skip) and c; €, cy.

And we also have the existence of I = [}, b and ¢, and while (b} do ¢,y €, 2 and ¢; € cyp.

If ¢, isn’t a sequence command, let ¢; = ¢y, then we have ¢, = while (]! do ¢y, skip) and ¢ €¢ co.

61

And we also have the existence of [= [}, b and ¢, and while (b} do ¢,y €, ¢2 and ¢; € cyp.
This case is proved.

By the evaluation rule while-f, we have (while [b]!, do cy,T) — ([skipl’, 7+-[((b, [, false))]).
Since there doesn’t exist ci, ¢y € C satisfying skip = ¢;; ¢2, this theorem is vacuously true. O

Lemma D.9 (Only skip Command doesn’t Produce Event). . For all trace v € T, and c,c' € C,
(c,T) — (', 1) if and only if ¢ = [skip]; .

VreT,c,c €C.{c,1)—(c,1) & c=[skip];c

Proof. Proved trivially by induction on ¢ and enumerate all operational semantic rules. O

62

E Soundness of Reachability Bounds Estimation

Theorem E.1 (Soundness of the Reachability Bounds Estimation). Given a program c with its program-
based dependency graph Gprog(c) = (Vprog, Eprog), We have:

VceC. Gprog(c) = (Vprog,Eprog) A Girace(€) = (Viraces Etrace)
= V(x!, wi) € Verace, (xly Wp) € Vprog, To € To(c), 7' €T, veEN.
(¢, Tg) =" (skip, To+T) A{wWP,To) Je v = w;(T) <V

Proof. Taking an arbitrary a program ¢ with its program-based dependency graph Gprog(¢) = (Vprog, Eprog)s
and an arbitrary pair of labeled variable and weights (x!, w) e Vprog, and arbitrary 7, 7' €T, veN satis-
fying

(¢, T) =* (skip, T+TY AT, w) e v

By Definition of Vprog in Gprog(c), we know w = absW(l) = max{Tclosure(Z‘)l €= Z, _, O}

By Lemma there exists an abstract event in abstrace(c) of form (g) =(l,_,_), corresponding to
the assignment command associated to labeled variable x’.

Let (€) = (I,dc, ") € abstrace(c) be this event for some dc and I’ such that (€) = (I,dc, ') € abstrace(c),
by the last step of phase 2, we know wpmg(x’) £ Tclosure(g). Then, it is sufficient to show:

VveN. (Tclosure(€),) Jo cnt(r’,]) < vTclosure(€)
By definition of Tclosure(g):

locb(€) locb(€) € SMBCST
Incr(locb(é)) + Y{Tclosure(®) x max(Vinvar(a) + ¢,0)|(é , a, ¢) € re(Locb©)} locb(é) ¢ SMBEST

case: locb(€) € SMBECST

Proved by the soundness of Local bound in Lemma[E.2]

case: locb(€) ¢ SMBCST
To show:

max{cnt(t)l | YT €T . (¢, 1) —* (skip, 7++7)}

< Incr(locb() + Y{Tclosure(é) x max(Vinvar(a) + ¢,0)| (€ , a, ¢) € re(Locb(@))}

Taking an arbitrary initial trace 7y € 7, executing ¢ with 7¢, let T be the trace after evaluation, i.e.,
(c,To) =™ (skip, 1), it is sufficient to show:

cnt (7)1 < Incr(locb() + Y {Tclosure(é) x max(Vinvar(a) + ¢,0)|€ , a, ¢) € re(Locb())}

By the soundness of the (1) Transition Bound and (2) Variable Bound Invariant in [2]] Theorem 1, This
case is proved. O

Lemma E.1 (Soundness of the Abstract Execution Trace). Given a program c, we have:

V1o, 7€T,e=(1,)€€ .{c,To) =" (skip, To+T) AEET
= Je=(l,_,)e(LxDCT x L) . ec abstrace(c)

63

Proof. Taking arbitrary 7 € T, and an arbitrary event € = (_,[,_) € &, it is sufficient to show:

VTeT.{c,1o)—" (skip, To++T) A€ET
= Je=(I,_,) e (L xDCT x L) . ec abstrace(c)

By induction on program c, we have the following cases:

case: c=[x —e]’

By the evaluation rule assn, we have ([x — a]’, 1) — (skip, 7++[(x, ',)], for some v € N and 7 =
[(x, I,)]

There are 2 cases, where I’ =1 and I # L.

In case of I’ # I, we know € &, 7, then this Lemma is vacuously true.

In case of I’ = [, by the abstract Execution Trace computation, we know abstrace(c) = abstrace’([x:=
ell; [skip]le) ={(l,absexpr(e), l.)}

Then we have €= (I, absexpr(e),) and €€ abstrace(c).

This case is proved.

case: ¢ =[x — query(w)]l’
This case is proved in the same way as case: ¢ = [x — e]’.

case: while [b]'v doc

If the rule applied to is while-t, we have

(while [b]* do cy,T) — {Cy; while [b]' do ¢y, To++[(b, [, true)]).

Let 7, € T satisfying following execution:

(Cuw, To++1(, Ly, true)]) = (skip, To++[(D, Ly, true)]++T)

Then we have the following execution:

(while [b]% do ¢y, T) = (Ci; while [b]' do ¢y, T+ [(D, [y, true)]) = (while [b]™ do ¢y, Tos[(D, Ly, tTUE) 4T)
(skip, To++[(b, Iy, true)]«+T ++71) for some 71 € T and 7 = [(b, [}, true)]«sT y++T1.

Then we have 3 cases: (1) € =, (b, [y, true), 2)eet, or 3) eeTy.

In case of (1). € =¢ (b, I, true), since abstrace(c) = abstrace’(c; [skip]le) ={(I,T,init(cy))}U
---, we have e=(1,T, init(cy)) and this case is proved.

In case of (2). € € T, by induction hypothesis on c¢,, with the execution (¢, To++[(b, [, true)l) =
(skip,1g++[(b, Iy, true)l++1y) and trace 7,, we know there is an abstract event of the form glz
(I,_,_) € abstrace(c,) where abstrace(c,) = abstrace’(c,; [skip] ley.

Leté = (I,dc,1") for some dc and I’ such that € abstrace(c).

By definition of abstrace’, we have abstrace’(cy; [skip] ley = abstrace’(c,)U{(l',dc, 1,)|(I',dc) €
absfinal(cy)}. y a,

There are 2 subcases: (2.1) € € abstrace’(cy) or (2.2) e € {(I',dc,l.)|(I',dc) € absfinal(cy)}.

sub-case: (2.1)

Since S;t)strace(c) =abstrace’(c,,)U{l',dc,1)|(I',dc) € absfinal(c,)}U-- -, we know the abstract
event € € abstrace(c).

This case is proved.

sub-case: (2.2) € € {(I', dc, 1o)|(I, dc) € absfinal(cy)}

In this case, we know (I,dc) € absfinal(cy).

Since abstrace(c) = abstrace’(c,)Uil',dc,1,)|(I',dc) € absfinal(c,)}u---, we know (I, dc, 1) €
(', dc,1)|(I',dc) € absfinal(cy)}, i.e., the abstract event (I,dc, [,,) € abstrace(c) and (I,dc,)
has the form (I,_,_).

This case is proved.

64

In case of (3). € € 71, we know either € = (b, [,), or € € 7/, where 7/, € T is the trace of executing ¢,
in an iteration.

Then this case is proved by repeating the proof in case (1) and case (2).

If the rule applied to is while-f, we have

(while [b]' do Cuw,T0) _ while-f (skip,To++[(b, I, false)]), In this case, we have T = [(b, [, false)]
and € = (b, 1, false) (0.w., € ¢ T and this lemma is vacuously true) with [= [,,.

By the abstract execution trace computation, abstrace(c) = {(/, T,init(cy))} U---, we have €=
(I, T,init(cy)) and €€ abstrace(c).

This case is proved.

case: if ([bl', ¢, cr)

This case is proved in the same way as case: ¢ = while [b]’ do c.

case: ¢ = Cs1;Cs2

By the induction hypothesis on c¢5; and cg» separately, and the same step as case (2). of case: ¢ =
while [b]’ do ¢, we have this case proved. O

Lemma E.2 (Soundness of the Local Bound). Given a program c, we have:
Ve=(l,dc, 1) . max{cnt(z)] | VT €T . (c,7) —* (skip, 7++7")} < Locb(e)

Proof.

sub-case: [¢ SCC(absG(c))

In this case, we know variable x isn’t involved in the body of any while command.

Taking an arbitrary 7 € T, let T € T be of resulting trace of executing ¢ with 7, i.e., {¢,7¢) —* (skip, 1),
we know the assignment command at line [associated with the abstract event ¢ will be executed at
most once, i.e.,: cnt(r)l <1

By locb definition, we know locb(€) = 1.

This case is proved.

sub-case: [€ SCC(absG(c))A €€ dec(x)
in this case, we know locb(g) £ x.

sub-case: [€ SCC(absG(c))A €¢ Uxevardec(x)A ¢ SCC(absG(c)/dec(x))

in this case, we know locb(€) £ x.

In the two cases above, the soundness is discussed in [2] Section 4 of Paragraph Discussion on
Soundness in Page 25. O

For every labeled variable in program c, x € LV,, there is a unique abstract event in program’s
abstract execution trace e€ abstrace(c) of form (I,_,_).

Lemma E.3 (Uniqueness of the Abstract Execution Trace). Given a program c, we have:

Vig, 1€ T,e=(,1,_,)e&*™ {c,To) =" (skip, To+T) AEET
= Jle= (I, ,)e(Lx DT x L) . €€ abstrace(c)

Proof. This is proved trivially by induction on the program c. O

65

F Soundness of Edge Weight Estimation

Theorem F.1 (Soundness of the Edge Weights Estimation). Given a program ¢ with its program-based
dependency graph Gprog(€) = (Vprog, Eprog), We have:

VceC. Gprog(c) = (Vprog» Eprog) A Girace(€) = (Virace Etrace)
= V(v1, WP, 12) € Etrace, (U1, W', 12) € Eprog, To € To(c), 7' € T, v EN.
(¢, To) =" (skip, T+ T) A WP, To) Je v = wi(T) <V

Proof. Taking an arbitrary a program ¢ with its program-based dependency graph Gprog(€) = (Vprog) Eprog)s
and an arbitrary pair of labeled variable and weights (x! w) e Vprog» and arbitrary T, 7' €T, veN satis-
fying

(¢, T) =" (skip, T++T) AT, W) e v

By Definition of Wprog in Gprog(c), we know w = absW(l) = max{Tclosure(g)l €= Z,_,)L

By Lemma there exists an abstract event in abstrace(c) of form (2) =(l,_,_), corresponding to
the assignment command associated to labeled variable x’.

Let (€) = (I,dc, ") € abstrace(c) be this event for some dc and I’ such that (€) = (I, dc, ') € abstrace(c),
by the last step of phase 2, we know wpmg(xl) £ Tclosure(€). Then, it is sufficient to show:

VveN. (Tclosure(g‘),r) Ue ent(t),]) < UTclosure(g)
By definition of Tclosure(g):

locb(€) locb(€) € SMBRST
Incr(locb(@) + Y {Tclosure(®) x max(Vinvar(a) + ¢,0)| (€, a, ¢) € re(Locb(@)} locb() ¢ SMBEST

case: locb(€) € SMBCST

Proved by the soundness of Local bound in Lemma[E.2]

case: locb(€) ¢ SMBCST
To show:

max{cnt(t)l | YT €T . (¢, 1) —* (skip, 7++7")}
< Incr(locb() + Y{Tclosure(é) x max(Vinvar(a) + ¢,0)| (€ , a, ¢) € re(Locb(@))}

Taking an arbitrary initial trace 7y € J, executing ¢ with 7¢, let T be the trace after evaluation, i.e.,
(c,To) —* (skip, 1), it is sufficient to show:

cnt(t)] < Incr(locb(@) + ¥ {Tclosure(é) x max(Vinvar(a) + ¢,0)|(¢ , a, c) € re(Locb(é)}

By the soundness of the (1) Transition Bound and (2) Variable Bound Invariant in [2]] Theorem 1, This
case is proved. 0

66

G Soundness of Adaptivity Computation Algorithm

Theorem G.1 (Soundness of AdaptSearch). For every program c, given its Program-Based Depen-
dency Graph Gprog,
AdaptSearch(Gprog) = Aprog(Gprog)-

proof Summary:
1. for every two vertices x, y with a walk ky, , from x to y on Gprog,
2 if they are on the same SCC,
2.1 Then this walk must also be in this SCC. (By the property that each SCC are single direct connected,
otherwise they are the same SCC)
2.2 By Lemma|G.I] 1en® of this walk is bound by the longest walk of this SCC.
2.3 The output of AdaptSearch(Gyrog) is greater than longest walk of a single SCC.
3. if they are on different SCC.
3.1 Then this walk can be split into 7,2 < n sub-walks, and each sub-walk belongs to a different SCC.
(Also by the property of SCC)
3.2 By Lemma|G.1] 1en? of each sub-walk is bound by the longest walk of the SCC it belongs to.
3.3 By line: in algorithm, the output of AdaptSearch(Gprog) is greater than sum up the 1en? of longest
walk in every SCC that each sub-walk belongs to.
4. Then we have AdaptSearch(Gprog(€)) = Aprog(C).

Proof. Taking arbitrary program c € C, let Gprog () = (Vprog, Eprog) Wprog, Qprog) be its program based
dependency graph.
Taking an arbitrary walk ky,, € WX (Gprog), With vertices sequence (x, s1,-++,¥), it is sufficient to show:

len?(ky,,) = len(s|s € (x,s1,---,) AQ(s) = 1) < AdaptSearch(Gprog ()

By line:3 of AdaptSearch(Gprog) algorithm defined in Algorithm let G5€€4, ... ,GSCC_ be all the strong
connected components on Gpyog With 0 < 12 < [V|, where each G5°°; = (V;,E;, W;,Q;),

By line:5-6 in Algorithm [1} let adapts..[G5C;] be the result of AdaptSearch,. (G3°¢;) for each G5CC;.
There are 2 cases:

case: x, y on the same SCC
Let G5¢C be this SCC where vertices x and y on, by Lemma|G.1] we know

len?(ky,y) < max{len?(k)|k € WK (G5)} < AdaptSearch;, (G5

By line:15 and line:18 in AdaptSearch(Gprog) algorithm in Algorithm 1] let adapt be the output value,
we know AdaptSearch(Gprog(€)) = adapt = adaptiyp = adaptscc(SSC).
ie.,

len?(ky,y) < AdaptSearch(Gprog(c))

This case is proved.

case: x, y on different SSC

Let G5¢C,,G5¢¢y,---,G%°¢,,,G5°C,,0 < m be all the SCC this walk pass by, where each vertex in
(x,s1,°*+, Sn, y) belongs to a single SCC number.

By the property of SCC, we know every 2 SCCs are single direct connected. Then we can divide this
walk into m + 2 sub-walks:

kx = (x,81,", Ssce,)s

67

k1= (Ssceer ™" Sscer)s

ky = (SSCCm)"' ’Sy)’
where ky € WK(GSC), -+, ky € WK(GSC)).
By Lemma|G.1} we know for each walk k;:

len?(k;) < max{len(k;)|k; € WK(G5C;)} < AdaptSearch,,.(G°°;) = adaptgc. [GZC;]
Then we have:
len%(ky,)) = leni(ky)+1leni(ky)+---+1len(ky) < adaptscc[GSCC1]+adaptscc[Gscc1]+---+adaptscc[Gsccy] < adapt
, where adapt is the output of AdaptSearch(Gprog). This case is proved. O

Lemma G.1 (Soundness of AdaptSearch,..). For every program c, given its Program-Based De-
pendency Graph Gprog, if GSCC is a strong connected sub-graph of Gprog, then max{len(k)|k €
WX (GSC)} < AdaptSearch,.(GS¢C).

Vce C,65C e G . G5 Cupapn Gprog(€) = max{len?(k)|k € WK (G3°°)} < AdaptSearch . (G5)

ProofSummary:
(1) for each node x on SCC, by property of SCC, for every walk on SCC ky . = (x, 51, , x), with set
of unique vertex {vy,-, x} there are PATH (py) on G5CC.
(2) For every path pfc,x =(x, v, , %) € PATH(px x)s flowcapacity(p;,x) is the maximum visiting
times for every v € (x, v1,-++,X), visit(s)(sy, -+, X)) < flowcapacity(pk ,);
3) querynu.m(pfc,x) * flowcapacity(pfc,x) >len(s|se (s1, -+, x)AQ(s) =1) =1len%(k),

(4) Then, the max = max{len?(ky i)lky,x € WK (ky)}
P €PATH(py,x)

(5) Then, max{querynum(pfc‘x) *flowcapacity(pfc‘x) |x € GSCC/\pi'x € PATH (pyx)} = max{lenq(k;_x) |x €
GSCC A k;’x € WK (ky,x)}

(6) We also kpow by the property of SCC, Vx, y € G5¢C, let ky,y be arbitrary walk on Gsee, leni(ky,) <
max{lend(k; ,)Ik; € WK(ky)}

(7) Then,max{leni(k} ,)|x € GSC A kL , € WK (ky,»)} = max{leni(kL ,)|x,y € GSCAKL |, € WK (ky,))}

i.e., max{leni(k.)x € G5C A kL € WK (ky,)} = max{lend(k)|k € WK(GS)} = Aprog (G5).

(8) We also know AdaptSearch,,.(G5°¢) = max{querynum(pfm) * flowcapacity(pfc,x)lx € GSCC A

Pfc,x € PATH(px,x)} by the AdaptSearch,, algorithm.

Then we have AdaptSearch . (G5°°) = Aprog (G5°)

Proof. Taking arbitrary program c € C, let Gprog(c) = (V,E, W, Q) be its program based dependency graph
and G5 = (Vscc, Esce, Wsee, Qscc) be an arbitrary sub SCC graph of Gprog.
There are 2 cases:

case: G5¢C contains no edge and only 1 vertex v, i.e., |[E|=0A V] =1
In this case there is no walk in this graph, i.e., WX (G5®) = @.

The adaptivity is Q(v).

This case is proved.

case: G5CC contains at least 1 edge and at least 1 vertex v, i.e., 1 <|E[A1<|V]|
Taking arbitrary walk ky,, € WK (G3€C), with vertices sequence (x, s, , ¥), it is sufficient to show:

len%(ky,,) = len(s|s € (x,s1,---,) AQ(s) =1) < AdaptSearch,.(G5C)

68

By AdaptSearch,,.(G5°) algorithm line 19, in the iteration where x is the starting vertex, we know
AdaptSearch,, . (G5C) = rg.. = max(rsec, dfs(G5C, x,visited)), then it is sufficient to show:

len(s|s€ (x,s1, -+,) AQ(s) = 1) <dfs(G5C,x,visited).

Let {vy,---,x} be the set of all the distinct vertices of ky ,’s vertices sequence (x,s,---,y), and
(v1,-++,x) be a subsequence containing all the vertices in {x, vy,---, y}.
By the definition of walk, there is a path py , from x to y with this vertices sequence: (x, vy,---,¥).

By line:13 of the dfs (G5, x, visited) in Algorithm[2]

we know dfs(G5°C,x,visited) = r[x] and r[x] = max{flowcapacity(p)xquerynum(p)|p € PATH, (G5C)},
where PATH . (G5€C) is a subset of PATH . (G5®), in which every path starts from x and goes back

to x.

By the property of strong connected graph, we know in this case PATH . (G5®) # @ and there are 2

cases, x =y and x # y.

case: X =y
In this case, we know py , € p € PATH, +(G5), then it is sufficient to show:

len(s|s€ (x,s1,--+, Y) AQ(s) = 1) = flowcapacity(py,y) x querynum(py,y)

By line:7 and line:13 in Algorithm we know flowcapacity(py,y) is the maximum visiting times
for every ve (x, vy, ++,¥),

we know for every s in the vertices sequence of walk ky, y, visit(s)(x,s1,--+,y) <flowcapacity(py,y)
Also by line:8 and line:13 in Algorithm 2} we know querynum(py,y) is the number of vertices with Q
equal to 1,

Then we know
len(s|s€ (x,s1,---,) AQ(s) = 1) < flowcapacity(py,y) X querynum(py,y)
This case is proved.

case: x £y

we also have a path start from y and go back to x.

Let p,, . be this path with vertices sequence (y, v},---,x), we have a path p, ,, which is the path p, ,
concatenated by path p, , with vertices sequence (x, vy,---,), vi, e v;n, x), where m = 0.

Then in this case, it is sufficient to show:

len(s|s€ (x,s1,-++,¥) AQ(s) = 1) < flowcapacity(py,x) X querynum(py,)

Since flowcapacity(py,y + py,x) is the maximum visiting times for every v € (x, vy,---,), v}, -+, X),
By line:7 in Algorithm 2, we know flowcapacity(py,,) is the maximum visiting times for every
ve(x, vy,),

we know for every s in the vertices sequence of walk ky, y, visit(s)(x,s1,---,y) < flowcapacity(py,y)
Also by line:8 in Algorithm 2] we know querynum(py,,) is the number of vertices with Q equal to 1,
Then we know

len(s|s€ (x,s1,---,Y) AQ(s) = 1) < flowcapacity(py,y) X querynum(py,y) = rlyl

By line:13, we also know r[x] = max(r[x],r[v},] + flowcapacity(pyx) x querynum(py,y), and
riyl < r{w),] then we know r[y] < r(x], i.e., Len(s|s € (x, s1,--+, ¥) AQ(s) = 1) < r[x]

This case is proved. O

69

H Conditional Completeness of Adaptivity Computation Algorithm

Theorem H.1 (Conditional Completeness of AdaptSearch). For every program c, given its Program-
Based Dependency Graph Gprog, if Gprog(€) is acyclic directed, then

AdaptSearch(Gprog) = Aprog(Gprog)-

proof Summary:
1. for every two vertices x, y with a walk ky, , from x to y on Gyrog,
2 since Gprog 18 acyclic directed, then this walk corresponds to a path py , where every vertex is visited
exactly once.
3. the query length is sum of the query annotation.
From Algorithm 2] every vertex is a SCC with only one vertex and zeor edge, its adaptivity is exactly
its query annotation.
=>1len(kyy) =) Adapt[scc;]

ViESSC;

This is proved.

Proof. Taking arbitrary program c € C, let Gprog(€) = (Vprog) Eprog) Wprog, Qprog) be its program based
dependency graph.

Let the walk k4 € WK (Gprog(c)) be the finite walk with the longest query length, and the vertices
sequence (Sy,---,Sy), it is sufficient to show:

len%(kyax) = len(s|s€ (s1,-++, Sp) A Qprog(s) = 1) = AdaptSearch (Gprog(c€))

In order to show the completeness, it is sufficient to show two following items,
1. By line: 15, AdaptSearch(Gprog(€)) can find a path p,qx such that adapty, . = len%(kjnqax)
2. This py,y is the longest weighted path found by AdaptSearch(Gprog(C)), and adaptp, . is returned
as the final output.
By the property of ACG, we know every s; € (s1,---,S,) shows up exactly once. Then we know this
walk is a path and

len(kmax) = Z Qprog (i)

Si€(s1,m,8n)

By line: 13, through searching on all the vertices connected on Gprog(c) from the starting node s;, we
know that AdaptSearch(Gprog(c)) finds this path pax = (s1,-++, Sp).
Then, it is sufficient to show

adaptpmax = Z QPIOg(Si)'
Si€(81,°+,8n)
By line: 15, let G5¢¢;,... G5, be all the SCC, where each vertex in (sy,---,s,) belongs to, it is
sufficient to show:

adaptscc[G®Cil= Y Qprog(si)-

GSCC, e (@SCC ... GSCC,) Si€(S1,7,8n)

By line:3 in Algorithm 1] let G3¢¢; = (v;,E;,W;,Q;) for GSC¢; € (G5¢Cy, .-+ ,G5°C,,)) be the SCC found by
the standard Algorithm.,

Then, by the property of ACG, we know every ; 1s a single vertex v; without edge and Q; is the
query annotation of v;, i.e., V; = {s;} and Q; = {(si, Qprog(si))}.

So we know n=m.

GSCC

70

Also by Algorithmline: 4-5, we know adaptscc[G3C;] = Qprog(si)-
Then we can conclude:

adaptscc[GSCCi] = Z Qprog(si) = Z Qprog(si)-

GSCC,;€(GSCC - ,GSCC) GSCC, e (GSCC ... GSCC) Si€(S1,+,Sn)

So we have (1). "the existence" proved. In order to show pjax is the longest path found and adapty,,.
is returned by AdaptSearch(Gprog(c)), by line: 18, it is sufficient to show adapt = adapty,, ..
It is sufficient to show a contradiction if adapt # adaptp,,, in following two cases:

case: adapt <adapty,,,
, it is easy to show the contradiction by line: 18 where adapt = max(adapt,adaptp,,,) = adapty,, .

case: adapt > adapty, .
, Let p), .. be the path such that adapt = adapt, _>adapt,,, Wwith vertices sequence (s},---,s},).
Then we know p),, . corresponds to a walk k), with the same vertices sequence.

Then by the same proof above, we know lend(k},,,) = adapt, and lend(ky,,,) > lend(kpax).

max
Then there is a contradiction that k},,, is the walk with the longest query length rather than k4.
Then, we have (2) proved.]
References

[1] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon
Roth. Preserving statistical validity in adaptive data analysis. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 117-126, 2015.

[2] Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound analysis of
imperative programs using difference constraints. Journal of automated reasoning, 59(1):3—-45,
2017.

71

	 Query While Language - Extended
	Labeled Language
	Trace-based Operational Semantics for Query While Language

	Event and Trace
	Event
	Trace

	 Dependency and Adaptivity
	Dependency
	Execution Based Dependency Graph
	Trace-based Adaptivity
	 Example From Limitation
	Trace-based Adaptivity

	AdaptFun
	A guide to the static program analysis framework
	Graph Estimation
	Adaptivity Computation

	Vertices Estimationn
	Edge and Weight Estimation
	Abstract Execution Control Flow graph
	 Edge Estimation with Interprocedure Call
	Weight Estimation via Path Sensitive Reachability Bound Analysis

	Program-Based Data Dependency Graph Generation
	Adaptivity Upper Bound Computation

	Examples and Experimental Results
	Examples
	Implementation Results

	Appendices
	Proofs of Lemmas in Section 1, 2 and 3
	Soundness of AdaptFun
	Soundness of AdaptFun with Dependency Graph and Adaptivity Extension
	Soundness of flowsTo with Language and Adaptivity Extension
	Inversion Lemmas and Helper Lemmas

	Soundness of Reachability Bounds Estimation
	Soundness of Edge Weight Estimation
	Soundness of Adaptivity Computation Algorithm
	Conditional Completeness of Adaptivity Computation Algorithm

