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Program Analysis for Adaptive Data Analysis

ANONYMOUS AUTHOR(S)

Data analyses are usually designed to identify some property of the population from which the data are drawn,

generalizing beyond the specific data sample. For this reason, data analyses are often designed in a way that

guarantees that they produce a low generalization error. That is, they are designed so that the result of a data

analysis run on a sample data does not differ too much from the result one would achieve by running the

analysis over the entire population.

An adaptive data analysis can be seen as a process composed by multiple queries interrogating some data,

where the choice of which query to run next may rely on the results of previous queries. The generalization

error of each individual query/analysis can be controlled by using an array of well-established statistical

techniques. However, when queries are arbitrarily composed, the different errors can propagate through

the chain of different queries and bring to high generalization error. To address this issue, data analysts are

designing several techniques that not only guarantee bounds on the generalization errors of single queries,

but that also guarantee bounds on the generalization error of the composed analyses. The choice of which of

these techniques to use, often depends on the chain of queries that an adaptive data analysis can generate.

In this work, we consider adaptive data analyses implemented as while-like programs and we design a

program analysis which can help with identifying which technique to use to control their generalization error.

More specifically, we formalize the intuitive notion of adaptivity as a quantitative property of programs. We

do this because the adaptivity level of a data analysis is a key measure to choose the right technique. Based on

this definition, we design a program analysis for soundly approximating this quantity. The program analysis

generates a representation of the data analysis as a weighted dependency graph, where the weight is an upper

bound on the number of times each variable can be reached, and uses a path search strategy to guarantee an

upper bound on the adaptivity. We implement our program analysis and show that it can help to analyze the

adaptivity of several concrete data analyses with different adaptivity structures.

Additional Key Words and Phrases: Adaptive data analysis, program analysis, dependency graph

1 INTRODUCTION
Consider a dataset 𝑋 consisting of 𝑛 independent samples from some unknown population 𝑃 . How

can we ensure that the conclusions drawn from 𝑋 generalize to the population 𝑃? Despite decades

of research in statistics and machine learning on methods for ensuring generalization, there is an

increased recognition that many scientific findings generalize poorly (e.g. [19, 26] ). While there

are many reasons a conclusion might fail to generalize, one that is receiving increasing attention is

adaptivity, which occurs when the choice of method for analyzing the dataset depends on previous

interactions with the same dataset [19]. Adaptivity can arise from many common practices, such

as exploratory data analysis, using the same data set for feature selection and regression, and

the re-use of datasets across research projects. Unfortunately, adaptivity invalidates traditional

methods for ensuring generalization and statistical validity, which assume that the method is

selected independently of the data. The misinterpretation of adaptively selected results has even

been blamed for a “statistical crisis” in empirical science [19].

A line of work initiated by Dwork et al. [15], Hardt and Ullman [25] posed the question: Can we

design general-purpose methods that ensure generalization in the presence of adaptivity, together

with guarantees on their accuracy? The idea that has emerged in these works is to use randomization

to help ensure generalization. Specifically, these works have proposed to mediate the access of an

adaptive data analysis to the data by means of queries from some pre-determined family (we will

consider here a specific family of queries often called "statistical" or "linear" queries) that are sent

to a mechanism which uses some randomized process to guarantee that the result of the query does

not depend too much on the specific sampled dataset. This guarantees that the result of the queries

generalizes well. This approach is described in Fig. 1. This line of work has identified many new
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Fig. 1. Overview of our Adaptive Data Analysis model. We have a population that we are interested in
studying, and a dataset containing individual samples from this population. The adaptive data analysis we
are interested in running has access to the dataset through queries of some pre-determined family (e.g.,
statistical or linear queries) mediated by a mechanism. This mechanism uses randomization to reduce the
generalization error of the queries issued to the data.

algorithmic techniques for ensuring generalization in adaptive data analysis, leading to algorithms

with greater statistical power than all previous approaches. Common methods proposed by these

works include, the addition of noise to the result of a query, data splitting, etc. Moreover, these

works have also identified problematic strategies for adaptive analysis, showing limitations on

the statistical power one can hope to achieve. Subsequent works have then further extended the

methods and techniques in this approach and further extended the theoretical underpinning of this

approach, e.g. [7, 13, 14, 16, 27, 31, 35, 36].

A key development in this line of work is that the best method for ensuring generalization in an

adaptive data analysis depends to a large extent on the number of rounds of adaptivity, the depth of

the chain of queries. As an informal example, the program 𝑥 ← 𝑞1 (𝐷);𝑦 ← 𝑞2 (𝐷, 𝑥); 𝑧 ← 𝑞3 (𝐷,𝑦)
has three rounds of adaptivity, since 𝑞2 depends on 𝐷 not only directly because it is one of its input

but also via the result of 𝑞1, which is also run on 𝐷 , and similarly, 𝑞3 depends on 𝐷 directly but

also via the result of 𝑞2, which in turn depends on the result of 𝑞1. The works we discussed above

showed that, not only does the analysis of the generalization error depend on the number of rounds,

but knowing the number of rounds actually allows one to choose methods that lead to the smallest

possible generalization error - we will discuss this further in Section 2.

For example, these works showed that when an adaptive data analysis uses a large number of

rounds of adaptivity then a low generalization error can be achieved by a mechanism adding to

the result of each query Gaussian noise scaled to the number of rounds. When instead an adaptive

data analysis uses a small number of rounds of adaptivity then a low generalization error can be

achieved by using more specialized methods, such as data splitting mechanism or the reusable

holdout technique from Dwork et al. [15]. To better understand this idea, we show in Fig. 2 three

experiments showcasing these situations. More precisely, in Fig. 2(a) we show the results of a

specific analysis
1
with two rounds of adaptivity. This analysis can be seen as a classifier which first

runs 400 non-adaptive queries on the first 400 attributes of the data, looking for correlations between

the attributes and a label, and then runs one last query which depends on all these correlations.

Without any mechanism the generalization error of the last query is pretty large, and the lower

generalization error is achieved when the data-splitting method is used. Fig. 2(c) shows how this

situation also change with the number of queries. Specifically, it shows the root mean square error

of the last adaptive query when the numbers queries varies. This also highlight the fact that different

mechanisms, for the same analysis, produce results with very different generalization error. In

Fig. 2(b), we show the results of a specific analysis
2
with four hundreds rounds of adaptivity. At

each step, this analysis runs an adaptive query based on the results of the previous ones. Without

1
We will use formally a program implementing this analysis (Fig. 3) as a running example in the rest of the paper.

2
We will present this analysis formally in Section 6.
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(a) (b) (c)
Fig. 2. The generalization errors of two adaptive data analysis examples, under different choices ofmechanisms.
(a) Data analysis with 2 rounds adaptivity, (b) Data analysis with 400 rounds adaptivity. (c) Same one as (a)

any mechanism, the generalization error of most of the queries is pretty large, and this error can

be lowered by using Gaussian noise.

This scenario motivates us to explore the design of program analysis techniques that can be used

to estimate the number of rounds of adaptivity that a program implementing a data analysis can

perform. These techniques could be used to help a data analyst in the choice of the mechanism to

use, and they could ultimately be integrated into a tool for adaptive data analysis such as the Guess
and Check framework by Rogers et al. [31].

The first problem we face is how to formally define a model for adaptive data analysis which is

general enough to support the methods we discussed above and which would permit to formulate

the notion of adaptivity these methods use. We take the approach of designing a programming

framework for submitting queries to some mechanism giving access to the data mediated by one

of the techniques we mentioned before, e.g., adding Gaussian noise, randomly selecting a subset

of the data, using the reusable holdout technique, etc. In this approach, a program models an

analyst asking a sequence of queries to the mechanism. The mechanism runs the queries on the

data applying one of the methods above and returns the result to the program. The program can

then use this result to decide which query to run next. Overall, we are interested in controlling the

generalization of the query results returned by the mechanism, by means of the adaptivity.

The second problem we face is how to define the adaptivity of a given program. Intuitively, a query

𝑄 may depend on another query 𝑃 , if there are two values that 𝑃 can return which affect in different

ways the execution of 𝑄 . For example, as shown in [14], and as we did in our example in Fig. 2(a),

one can design a machine learning algorithm for constructing a classifier which first computes

each feature’s correlation with the label via a sequence of queries, and then constructs the classifier

based on the correlation values. If one feature’s correlation changes, the classifier depending on

features is also affected. This notion of dependency builds on the execution trace as a causal history.
In particular, we are interested in the history or provenance of a query up until this is executed,

we are not then concerned about how the result is used — except for tracking whether the result

of the query may further cause some other query. This is because we focus on the generalization

error of queries and not their post-processing. To formalize this intuition as a quantitative program

property, we use a trace semantics recording the execution history of programs on some given

input — and we create a dependency graph, where the dependency between different variables

(queries are also assigned to variables) is explicit and track which variable is associated with a query

request. We then enrich this graph with weights describing the number of times each variable is

evaluated in a program evaluation starting with an initial state. The adaptivity is then defined as

the length of the walk visiting most query-related variables on this graph
3
. In other words, we

define adaptivity as a quantitative form of program dependency.

3
Formally, graphs will be well-defined only for terminating programs, this will guarantee that the longest walk is finite

3
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The third problem we face is how to estimate the adaptivity of a given program. The adaptive data

analysis model we consider and our definition of adaptivity suggest that for this task we can use a

program analysis that is based on some form of dependency analysis. This analysis needs to take

into consideration: 1) the fact that, in general, a query𝑄 is not a monolithic block but rather it may

depend, through the use of variables and values, on other parts of the program. Hence, it needs

to consider some form of data flow analysis. 2) the fact that, in general, the decision on whether

to run a query or not may depend on some other value. Hence, it needs to consider some form of

control flow analysis. 3) the fact that, in general, we are not only interested in whether there is

a dependency or not, but in the length of the chain of dependencies. Hence, it needs to consider

some quantitative information about the program dependencies.

To address these considerations and be able to estimate a sound upper bound on the adaptivity

of a program, we develop a static program analysis algorithm, named AdaptFun, which combines

data flow and control flow analysis with reachability bound analysis [22]. This combination gives

tighter bounds on the adaptivity of a program than the ones one would achieve by directly using

the data and control flow analyses or the ones that one would achieve by directly using reachability

bound analysis techniques alone. We evaluate AdaptFun on a number of examples showing that it

is able to efficiently estimate precise upper bounds on the adaptivity of different programs. All the

proofs and extended definitions can be found in the supplementary material.

To summarize, our work aims at the design of a static analysis for programs implementing

adaptive analysis that can estimate their rounds of adaptivity. Specifically, our contributions are:

(1) A programming framework for adaptive data analyses where programs represent analysts

that can query generalization-preserving mechanisms mediating the access to some data.

(2) A formal definition of the notion of adaptivity under the analyst-mechanism model. This

definition is built on a variable-based dependency graph that is constructed using sets of

program execution traces.

(3) A static program analysis algorithm AdaptFun combining data flow, control flow and

reachability bound analysis in order to provide tight bounds on the adaptivity of a program.

(4) A soundness proof of the program analysis showing that the adaptivity estimated by

AdaptFun bounds the true adaptivity of the program.

(5) An implementation of AdaptFun and an experimental evaluation of the bounds this imple-

mentation provides on several examples.

2 OVERVIEW
2.1 Some results in Adaptive Data Analysis
In Adaptive Data Analysis an analyst is interested in studying some distribution 𝑃 over some domain

X. Following previous works [7, 15, 25], we focus on the setting where the analyst is interested in

answers to statistical queries (also known as linear queries) over the distribution. A statistical query

is usually defined by some function query : X → [−1, 1] (often other codomains such as [0, 1]
or [−𝑅, +𝑅], for some 𝑅, are considered). The analyst wants to learn the population mean, which
(abusing notation) is defined as query(𝑃) = E

𝑋∼𝑃
[query(𝑋 )]. We assume that the distribution 𝑃 can

only be accessed via a set of samples 𝑋1, . . . , 𝑋𝑛 drawn independently and identically distributed

(i.i.d.)from 𝑃 . These samples are held by a mechanism𝑀 (𝑋1, . . . , 𝑋𝑛) who receives the query query
and computes an answer 𝑎 ≈ query(𝑃). The naïve way to approximate the populationmean is to use

the empirical mean, which (abusing notation) is defined as query(𝑋1, . . . , 𝑋𝑛) = 1

𝑛

∑𝑛
𝑖=1 query(𝑋𝑖 ).

However, the mechanism 𝑀 can adopt some methods for improving the generalization error

|𝑎 − query(𝑃) |.

4
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In this work we consider analysts that ask a sequence of 𝑘 queries query
1
, . . . , query𝑘 . If the

queries are all chosen in advance, independently of the answers of each other, then we say they are

non-adaptive. If the choice of each query query𝑗 depend on the prefix query1, 𝑎1, . . . , query𝑗−1, 𝑎 𝑗−1
then they are fully adaptive. An important intermediate notion is 𝑟 -round adaptive, where the

sequence can be partitioned into 𝑟 batches of non-adaptive queries. Note that non-adaptive queries

are 1-round and fully adaptive queries are 𝑘-round adaptive.

We now review what is known about the problem of answering 𝑟 -round adaptive queries.

Theorem 2.1 ([7]). (1) For any distribution 𝑃 , and any 𝑘 non-adaptive statistical queries,

max𝑗=1,...,𝑘 |𝑎 𝑗 − query𝑗 (𝑃) | = 𝑂

(√︃
log𝑘

𝑛

)
.

(2) For any distribution 𝑃 , and any 𝑘 𝑟 -round adaptive statistical queries, with 𝑟 ≥ 2, the empirical
mean (rounded to an appropriate number of bits of precision)4 satisfies:

max𝑗=1,...,𝑘 |𝑎 𝑗 − query𝑗 (𝑃) | = 𝑂

(√︃
𝑘
𝑛

)
In fact, these bounds are tight (up to constant factors) which means that even allowing one extra

round of adaptivity leads to an exponential increase in the generalization error, from log𝑘 to 𝑘 .

Dwork et al. [15] and Bassily et al. [7] showed that by using carefully calibrated Gaussian noise

in order to limit the dependency of a single query on the specific data instance, one can actually

achieve much stronger generalization error as a function of the number of queries, specifically.

Theorem 2.2 ([7, 15]). For any distribution 𝑃 , any 𝑘 , any 𝑟 ≥ 2 and any 𝑟 -round adaptive statistical
queries, if we answer queries with carefully calibrated Gaussian noise we have:

max𝑗=1,...,𝑘 |𝑎 𝑗 − query𝑗 (𝑃) | = 𝑂

(
4
√
𝑘√
𝑛

)
More interestingly, Dwork et al. [15] also gave a refined bounds that can be achieved with

different mechanisms depending on the number of rounds of adaptivity.

Theorem 2.3 ([15]). For any 𝑟 and 𝑘 , there exists a mechanism such that for any distribution 𝑃 ,
and any 𝑟 ≥ 2 any 𝑟 -round adaptive statistical queries, it satisfies

max𝑗=1,...,𝑘 |𝑎 𝑗 − query𝑗 (𝑃) | = 𝑂

(
𝑟
√
log𝑘
√
𝑛

)
Notice that Theorem 2.3 has different quantification in that the optimal choice of mechanism

depends on the number of queries and number of rounds of adaptivity. This suggests that if one

knows a good a priori upper bound on the number of rounds of adaptivity, one can choose the

appropriate mechanism and get a much better guarantee in terms of generalization error. As an

example, as we can see in Fig. 2, if we know that an algorithm is two rounds adaptive, we can

choose data splitting as the mechanism, while if we know that an algorithm has many rounds

of adaptivity we can choose Gaussian noise. It is worth to stress that by knowing the number of

rounds of adaptivity one can also compute a concrete upper bound on the generalization error

of a data analysis. This information allows one to have a quantitative, a priori, estimation of the

effectiveness of a data analysis. This motivates us to design a static program analysis aimed at

giving good a priori upper bounds on the number of rounds of adaptivity of a program.

2.2 AdaptFun formally through an example.
We illustrate the key technical components of our framework through a simple adaptive data

analysis with two rounds of adaptivity. In this analysis, an analyst asks 𝑘 +1 queries to a mechanism

4
With infinite precision even two queries may give unbounded error, when the first query’s result encodes the whole data.
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twoRounds(k) ≜
[𝑎 ← 0]0; [ 𝑗 ← 𝑘]1;
while [ 𝑗 > 0]2 do

(
[𝑥 ← query(𝜒 [ 𝑗] · 𝜒 [𝑘])]3;
[ 𝑗 ← 𝑗 − 1]4;
[𝑎 ← 𝑥 + 𝑎]5

)
;

[𝑙 ← query(𝜒 [𝑘] ∗ 𝑎)]6

(a)

𝑎0 :
𝜆𝜏0 .1
0

𝑥3 :
𝜆𝜏0 .𝜌 (𝜏0 )𝑘
1

𝑎5 :
𝜆𝜏0 .𝜌 (𝜏0 )𝑘
0

𝑙6 :
𝜆𝜏0 .1
1

𝑗1 :
𝜆𝜏0 .1
0

𝑗4 :
𝜆𝜏0 .𝜌 (𝜏0 )𝑘
0

(b)

𝑎0 : 1
0

𝑥3 : 𝑘
1

𝑎5 : 𝑘
0

𝑙6 : 1
1

𝑗1 : 1
0

𝑗4 : 𝑘
0

(c)
Fig. 3. (a) The program twoRounds(k), an example with two rounds of adaptivity (b) The corresponding
semantics-based dependency graph (c) The estimated dependency graph from AdaptFun.

in two phases. In the first phase, the analyst asks 𝑘 queries and stores the answers that are provided

by the mechanism. In the second phase, the analyst constructs a new query based on the results of

the previous 𝑘 queries and sends this query to the mechanism. The mechanism is abstract here

and our goal is to use static analysis to provide an upper bound on adaptivity to help choose

the mechanism. This data analysis assumes that the data domain X contains at least 𝑘 numeric

attributes (every query in the first phase focuses on one), which we index just by natural numbers.

The implementation of this data analysis in the language of AdaptFun is presented in Fig. 3(a).

The AdaptFun language extends a standard while language
5
with a query request constructor

denoted query. Queries have the form query(𝜓 ), where 𝜓 is a special expression (see syntax in

Section 3) representing a function : X → 𝑈 on rows. We use 𝑈 to denote the codomain of queries

and it could be [−1, 1], [0, 1] or [−𝑅, +𝑅], for some 𝑅 we consider. This function characterizes the

linear query we are interested in running. Indeed, as we discussed in the previous section, linear

queries compute the empirical mean of a function on rows — we use 𝜒 to abstract a possible row in

the database. As an example, 𝑥 ← query(𝜒 [ 𝑗] · 𝜒 [𝑘]) computes an approximation, according to

the used mechanism, of the empirical mean of the product of the 𝑗𝑡ℎ attribute and 𝑘𝑡ℎ attribute,

identified by 𝜒 [ 𝑗] · 𝜒 [𝑘]. Notice that we don’t materialize the mechanism but we assume that it is

implicitly run when we execute the query. In Fig. 3(a), the queries inside the while loop correspond

to the first phase of the data analysis and compute an approximation of the product of the empirical

mean of the first 𝑘 attributes. The query outside the loop corresponds to the second phase and

computes an approximation of the empirical mean where each record is weighted by the sum of

the empirical mean of the first 𝑘 attributes.

This example is intuitively 2-rounds adaptive since we have two clearly distinguished phases,

and the queries that we ask in the first phase do not depend on each other (the query 𝜒 [ 𝑗] · 𝜒 [𝑘] at
line 3 only relies on the counter 𝑗 and input 𝑘), while the last query (at line 6) depends on the results

of all the previous queries. However, capturing this concept formally is surprisingly difficult. The

difficulty comes from the fact that a query can depend on the result of another query in multiple

ways, by means of data dependency or control flow dependency.

2.2.1 Adaptivity definition. The central property we are after in this work is the adaptivity of a
program. We define formally this notion in three steps, which we will describe in details in Section 4.

First, we define a notion of dependency, or bettermay-dependency, between variables. To do this we

take inspiration from previous works on dependency analysis and information flow control and we

say that a variable may depend on another one if changing the execution of the latter can affect the

execution of the former. We can see in Fig. 3(a) that the value of the variable 𝑙 , which corresponds

5
Programs components are labeled, so that we can uniquely identify every component.
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to the result of the execution of the query in the second phase (in the command with label 6), is

affected by the value of the variable 𝑥 , which corresponds to the result of the execution of the query

at line 3 in the first phase, via the variable 𝑎. To formally define this notion of dependency, as in

information flow control, we use the execution history of programs recorded by a trace semantics

(see Definition 3).

Second, we build an annotated weighted directed graph representing the possible dependencies

between labeled variables. We call this graph semantics-based dependency graph to stress that this

graph summarize the dependencies we could see if we knew the overall behavior of the program. The

vertices of the graph are the assigned program variables with the label of their assignments, edges are

pairs of labeled variables which satisfy the dependency relations, weights are functions associated

with vertexes and describing the number of times the assignment corresponding to the vertex is

executed when the program is run in a given starting state
6
, and the annotations, which we call

query annotations, are bits associated with vertexes and describing if the corresponding assignment

comes from a query (1) or not (0). The semantics-based dependency graph of the twoRounds(k)
program we gave in Fig. 3(a) is described in Fig. 3(b) (we use dashed arrows for two edges that

will be highlighted in the next step, for the moment these can be considered similar to the other

edges—i.e. solid arrows). We have all the variables that are assigned in the program with their

labels, and edges representing dependency relations between them. For example, we have two

edges (𝑙6, 𝑎5) and (𝑎5, 𝑥3) describing the dependency between the variables assigned by queries.

The vertices 𝑙6 and 𝑥3 are the only ones with query annotation 1 (the subscript), since they are

the only two variables that are in assignments involving queries. Notice that the graph contains

cycles—in this example it contains two self-loops. These cycles capture the fact that the variables 𝑎5

and 𝑗4 are updated at every iteration of the loop using their previous value. Cycles are essential to

capture mutual dependencies like the ones that are generated in loops. Adaptivity is a quantitative

notion, so capturing this form of dependencies is not enough. This is why we also use weights. The

weight of a vertex is a function that given an initial state returns a natural number representing the

number of times the assignment corresponding to a vertex is visited during the program execution

starting in this initial state. For example, the vertex 𝑙6 has weight 𝜆𝜏 .1 since for every initial state 𝜏

the corresponding assignment will be executed one time, the vertex 𝑎5 on the other hand has weight

𝜆𝜏 .𝜌 (𝜏)𝑘 since the corresponding assignment will be executed a number of times that correspond

to the value of 𝑘 in the initial state 𝜏 , and 𝜌 is the operator reading value of 𝑘 from 𝜏 .

Third, we can finally define adaptivity using the semantics-based dependency graph. We actually

define this notion with respect to an initial state 𝜏 , since different states can give very different

adaptivity. We consider the longest walk that visits each vertex 𝑣 of the semantics-based dependency

graph no more than the value that the weight𝑤𝑣 assign to 𝜏 , and visits as many query nodes as

possible. The number of query nodes visited is the adaptivity of the program with respect to 𝜏 .

Looking again at Fig. 3(b), and assuming that 𝜏 (𝑘) ≥ 1, we can see that the the walk along the

dashed arrows, 𝑙6 → 𝑎5 → 𝑥3 has two vertices with query annotation 1, and we cannot find another

walk having more than 2 vertices with query annotation 1. So the adaptivity of the program in

Fig. 3(a) with respect to 𝜏 is 2. If we consider an initial state 𝜏 such that 𝜏 (𝑘) = 0 we have that the

adaptivity with respect to 𝜏 is instead 1.

2.2.2 Static analysis. To compute statically a sound and accurate upper bound on the adaptivity of

a program 𝑐 , we design a program analysis framework named AdaptFun which we will describe

formally in 5. The structure of AdaptFun (Fig. 4) reflects in part the definition of adaptivity we

discussed in the previous section. Specifically, AdaptFun is composed by two algorithms (the ones

6
In our trace semantics the state is recorded in the trace, so an initial state is actually represented by an initial trace. We will

use this terminology in later sections.
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Fig. 4. The overview of AdaptFun

in dashed boxes in the figure), one for building a dependency graph, which we call estimated
dependency graph, and the other to estimate the adaptivity from this graph. The first algorithm,

which we will describe formally in Section 5, generates the estimated dependency graph using

several program analysis techniques. Specifically, AdaptFun extracts the vertices and the query

annotations by looking at the assigned variables of the program, it estimates the edges by using

control flow and data flow analysis, and it estimates the weights by using symbolic reachability-

bound analysis—weights in this graph are symbolic expressions over input variables. The second

algorithm estimates the longest walk which respect the weights and which visit as many query

nodes as possible. The two algorithm together gives us an upper bound on the program’s adaptivity.
We show in Fig. 3(c) the estimated dependency graph that our static analysis algorithm returns

for the program twoRounds(k) in Fig. 3(a). Vertices and query annotations are the same as the ones

in Fig. 3(b) and they are simply inferred by scanning the program. As we said before, the edges are

estimated using control flow and data flow analysis. For the twoRounds(k) example, every edge

in Fig. 3(b) is precisely inferred by our combined analysis, this is why Fig. 3(c) contains exactly

the same edges. The weight of every vertex is computed using a reachability-bound estimation

algorithm which output a symbolic expression over the input variables, in the example only 𝑘 ,

representing an upper bound on the number of times each assignment is executed. For example,

consider the vertex 𝑥3, its weight is 𝑘 and this provides an upper bound on the values returned by

the weight function 𝜆𝜏 .𝜌 (𝜏)𝑘 associated with vertex 𝑥3 in Fig. 3(b) for any initial state.

The algorithm searching for the longest walk first finds a path 𝑙6 : 1
1
→ 𝑎5 : 𝑘

1
→ 𝑥3 : 𝑘

1
, and then

constructs a walk based on this path. Every vertex on this walk is visited once, and the number of

vertices with query annotation 1 in this walk is 2, which is the upper bound we expect. It is worth

to note here that 𝑥3 and 𝑎5 can only be visited once because there isn’t an edge to go back to them,

even though they both have the weight 𝑘 . In this sense, instead of simply computing the weighted

length of this path (2𝑘 + 1) as adaptivity AdaptBD computes the upper bound 2. Note that 2 is not

always tight, for example when 𝑘 = 0.

3 LABELED QUERYWHILE LANGUAGE
The language of AdaptFun is a standard while language with labels to identify different components

and with primitives for queries, and equipped with a trace-based operational semantics which is

the main technical tool we will use to define the program’s adaptivity.

Arithmetic Expression 𝑎 ::= 𝑛 | 𝑥 | 𝑎 ⊕𝑎 𝑎 | log 𝑎 | sign 𝑎 | max(𝑎, 𝑎) | min(𝑎, 𝑎)
Boolean Expression 𝑏 ::= true | false | ¬𝑏 | 𝑏 ⊕𝑏 𝑏 | 𝑎 ∼ 𝑎
Expression 𝑒 ::= 𝑣 | 𝑎 | 𝑏 | [𝑒, . . . , 𝑒]
Value 𝑣 ::= 𝑛 | true | false | [] | [𝑣, . . . , 𝑣]
Query Expression 𝜓 ::= 𝛼 | 𝑎 | 𝜓 ⊕𝑎 𝜓 | 𝜒 [𝑎]
Query Value 𝛼 ::= 𝑛 | 𝜒 [𝑛] | 𝛼 ⊕𝑎 𝛼 | 𝑛 ⊕𝑎 𝜒 [𝑛] | 𝜒 [𝑛] ⊕𝑎 𝑛
Label 𝑙 ∈ N ∪ {in, ex}
Labeled Command 𝑐 ::= [𝑥 ← 𝑒]𝑙 | [𝑥 ← query(𝜓 )]𝑙 | while [𝑏]𝑙 do 𝑐

| 𝑐; 𝑐 | if ( [𝑏]𝑙 , 𝑐, 𝑐) | [skip]𝑙

8
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Expressions include standard arithmetic (with value 𝑛 ∈ N∞) and boolean expression, (𝑎 and

𝑏) and extended query expressions 𝜓 . A query expression 𝜓 can be either a simple arithmetic

expression 𝑎, an expression of the form 𝜒 [𝑎] where 𝜒 represents a row of the database and 𝑎

represents an index used to identify a specific attribute of the row 𝜒 , a combination of two query

expressions,𝜓 ⊕𝑎 𝜓 , or a normal form 𝛼 . For example, the query expression 𝜒 [3] + 5 denotes the
computation that obtains the value in the 3rd column of 𝜒 in one row and then add 5 to it.

Command are the typical ones from while languages with an additional command 𝑥 ← query(𝜓 )
for query requests which can be used to interrogate the database and compute the linear query

corresponding to 𝜓 . Each command is annotated with a label 𝑙 , we will use natural numbers as

labels and we will use them to record the location of each command, so that we can uniquely

identify them. We also have a set LV of labeled variables, these are simply variables with a label.

We denote by LV(𝑐) the set of labeled variables which are assigned in an assignment command in

the program 𝑐 . We denote by QV(𝑐) the set of labeled variables that are assigned to the result of a

query in the program 𝑐 .

3.1 Trace-based Operational Semantics
We use a trace based operational semantics tracking the history of programs execution. The

operational semantics is parameterized by a database that can be access only through queries. Since

this database is fixed, we omit it from the semantics but it is important to keep in mind that this

database exists and it is what allow us to evaluate queries. A trace 𝜏 is a list of events generated
when executing specific commands. We denote by T the set of traces and we will use list notation

for traces, where [] is the empty trace, the operator :: combines an event and a trace in a new event,

and the operator ++ concatenates two traces.

We have two kinds of events: assignment events and testing events. Each event consists of a

quadruple, and we use Easn and Etest to denote the set of all assignment events and testing events,

respectively.

Event 𝜖 ::= (𝑥, 𝑙, 𝑣, •) | (𝑥, 𝑙, 𝑣, 𝛼) Assignment Event

| (𝑏, 𝑙, 𝑣, •) Testing Event

An assignment event tracks the execution of an assignment or a query request and consists of the

assigned variable, the label of the command that generates it, the value assigned to the variable,

and the normal form of the query expression, 𝛼 if this command is a query request, otherwise a

default value •. A testing event tracks the execution of if and while commands and consists of the

guard of the command, the label of the command, the result of evaluating the guard, while the

last element is •. We use the operator 𝜌 (𝜏)𝑥 to fetch the latest value assigned to 𝑥 in the trace 𝜏 .

We use the operator cnt to count the occurrence of a labeled variable in the trace. We denote by

TL(𝜏) ⊆ L the set of the labels occurring in 𝜏 . Finally, we use T0 (𝑐) ⊆ T to denote the set of initial
traces, the ones which assign a value to the input variables.

The trace based operational semantics is described in terms of a small step evaluation relation

⟨𝑐, 𝜏⟩ → ⟨𝑐′, 𝜏⟩′ describing how a configuration program-trace evaluates to another configuration

program-state. The rules for the operational semantics are described in Fig. 5. The rules for assign-

ment and query generate assignment events, while the rules for while and if generate testing events.

The rules for the standard while language constructs correspond to the usual rules extended to

deal with traces. We have relations ⟨𝜏, 𝑒⟩ ⇓𝑒 𝑣 and ⟨𝜏, 𝑏⟩ ⇓𝑏 𝑣 to evaluate expressions and boolean

expressions, respectively. Their definitions are in the supplementary material. The only rule that is

non-standard is the query rule. When evaluating a query, the query expression𝜓 is first simplified

to its normal form 𝛼 using an evaluation relation ⟨𝜏,𝜓 ⟩ ⇓𝑞 𝛼 . Then normal form 𝛼 characterize

the linear query that is run against the database. The query result 𝑣 is the expected value of the
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Command × Trace −→ Command × Trace ⟨𝑐, 𝜏 ⟩ −→ ⟨𝑐′, 𝜏 ′ ⟩

⟨𝜏, 𝑒 ⟩ ⇓𝑒 𝑣 𝜖 = (𝑥, 𝑙, 𝑣, •)
⟨ [𝑥 ← 𝑒 ]𝑙 , 𝜏 ⟩ −→ ⟨[skip]𝑙 , 𝜏 ::𝜖 ⟩

assn
𝜏,𝜓 ⇓𝑞 𝛼 query(𝛼 ) = 𝑣 𝜖 = (𝑥, 𝑙, 𝑣, 𝛼 )
⟨ [𝑥 ← query(𝜓 ) ]𝑙 , 𝜏 ⟩ −→ ⟨[skip]𝑙 , 𝜏 ::𝜖 ⟩

query

𝜏,𝑏 ⇓𝑏 true 𝜖 = (𝑏, 𝑙, true, •)
⟨ while [𝑏 ]𝑙 do 𝑐, 𝜏 ⟩ −→ ⟨𝑐 ; while [𝑏 ]𝑙 do 𝑐 ), 𝜏 ::𝜖 ⟩

while-t
𝜏,𝑏 ⇓𝑏 false 𝜖 = (𝑏, 𝑙, false, •)
⟨ while [𝑏 ]𝑙 , do 𝑐, 𝜏 ⟩ −→ ⟨[skip]𝑙 , 𝜏 ::𝜖 ⟩

while-f

⟨𝑐1, 𝜏 ⟩ −→ ⟨𝑐′1, 𝜏 ′ ⟩
⟨𝑐1;𝑐2, 𝜏 ⟩ −→ ⟨𝑐′1;𝑐2, 𝜏 ′ ⟩

seq1
⟨𝑐2, 𝜏 ⟩ −→ ⟨𝑐′2, 𝜏 ′ ⟩

⟨ [skip]𝑙 ;𝑐2, 𝜏 ⟩ −→ ⟨𝑐′2, 𝜏 ′ ⟩
seq2

𝜏,𝑏 ⇓𝑏 true 𝜖 = (𝑏, 𝑙, true, •)
⟨ if ( [𝑏 ]𝑙 , 𝑐1, 𝑐2 ), 𝜏 ⟩ −→ ⟨𝑐1, 𝜏 ::𝜖 ⟩

if-t if-f

Fig. 5. Trace-based Operational Semantics for Language.

function 𝜆𝜒.𝛼 applied to each row of the dataset. We summarize this process with the notation

query(𝛼) = 𝑣 which we use in the rule query. Once the answer of the query is computed, the

rules record all the needed information in the trace. As usual, we will use→∗ for the reflexive and
transitive closure of→.

The query expression evaluation relation ⟨𝜏,𝜓 ⟩ ⇓𝑞 𝛼 is defined by the following rules which

reduce a query expression to its normal form.

⟨𝜏, 𝑎⟩ ⇓𝑎 𝑛

⟨𝜏, 𝑎⟩ ⇓𝑞 𝑛

⟨𝜏,𝜓1⟩ ⇓𝑞 𝛼1 ⟨𝜏,𝜓2⟩ ⇓𝑞 𝛼2

⟨𝜏,𝜓1 ⊕𝑎 𝜓2⟩ ⇓𝑞 𝛼1 ⊕𝑎 𝛼2
⟨𝜏, 𝑎⟩ ⇓𝑎 𝑛

⟨𝜏, 𝜒 [𝑎]⟩ ⇓𝑞 𝜒 [𝑛] ⟨𝜏, 𝛼⟩ ⇓𝑞 𝛼

4 DEFINITION OF ADAPTIVITY
In this section, we formally present the definition of adaptivity for a given program. As we discussed

in Section 2.2.1, we first define a dependency relation between program variables, we then define a

semantics-based dependency graph, and finally look at longest walks in this graph.

4.1 May-dependency between variables
We are interested in defining a notion of dependencies between program variables since assigned

variables are a good proxy to study dependencies between queries—we can recover query requests

from variables associated with queries. We consider dependencies that can be generated by either

data or control flow. For example, in the program

𝑐1 = [𝑥 ← query(𝜒 [2])]1; [𝑦 ← query(𝜒 [3] + 𝑥)]2

the query query(𝜒 [3] + 𝑥) depends on the query query(𝜒 [2])) through a value dependency via 𝑥1.

Conversely, in the program

𝑐2 = [𝑥 ← query(𝜒 [1])]1; if ( [𝑥 > 2]2, [𝑦 ← query(𝜒 [2])]3, [skip]4)

the query query(𝜒 [2]) depends on the query query(𝜒 [1]) via the control dependency of the guard

of the if command involving the labeled variable 𝑥1.

To define dependency between program variables we will consider two events that are generated

from the same command, hence they have the same variable name or boolean expression and label,

but have either different value or different query expression, captured by the following definition.

Definition 1. Two events 𝜖1, 𝜖2 ∈ E differ in their value, or query value, denoted as Diff(𝜖1, 𝜖2),
if and only if:

𝜋1 (𝜖1) = 𝜋1 (𝜖2) ∧ 𝜋2 (𝜖1) = 𝜋2 (𝜖2) (1a)

∧
(
(𝜋3 (𝜖1) ≠ 𝜋3 (𝜖2) ∧ 𝜋4 (𝜖1) = 𝜋4 (𝜖2) = •) ∨ (𝜋4 (𝜖1) ≠ • ∧ 𝜋4 (𝜖2) ≠ • ∧ 𝜋4 (𝜖1) ≠𝑞 𝜋4 (𝜖2))

)
(1b)
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where 𝜓1 =𝑞 𝜓2 denotes the semantics equivalence between query values7, and 𝜋𝑖 projects the 𝑖-th
element from the quadruple of an event.

We can now define when an event may depend on another one
8
.

Definition 2 (Event May-Dependency). An event 𝜖2 ∈ Easn may-depend on an event 𝜖1 ∈ Easn
in a program 𝑐 denoted DEPe (𝜖1, 𝜖2, 𝑐), if and only if

∃𝜏, 𝜏0, 𝜏1, 𝜏 ′ ∈ T , 𝜖′1 ∈ E
asn, 𝑐1, 𝑐2 ∈ C . Diff(𝜖1, 𝜖′1)∧ (2a)

(∃𝜖′
2
∈ E .

©­«
⟨𝑐, 𝜏0⟩ →∗ ⟨𝑐1, 𝜏1++[𝜖1]⟩ →∗ ⟨𝑐2, 𝜏1++[𝜖1]++𝜏++[𝜖2]⟩∧ ⟨𝑐1, 𝜏1++[𝜖′

1
]⟩ →∗ ⟨𝑐2, 𝜏1++[𝜖′

1
]++𝜏 ′++[𝜖′

2
]⟩∧

Diff(𝜖2, 𝜖′
2
) ∧ cnt(𝜏, 𝜋2 (𝜖2)) = cnt(𝜏 ′, 𝜋2 (𝜖′

2
))

ª®¬ (2b)

∨
©­­­«
∃𝜏3, 𝜏 ′

3
∈ T , 𝜖𝑏 ∈ Etest .

⟨𝑐, 𝜏0⟩ →∗ ⟨𝑐1, 𝜏1++[𝜖1]⟩ →∗ ⟨𝑐2, 𝜏1++[𝜖1]++𝜏++[𝜖𝑏 ]++𝜏3⟩
∧⟨𝑐1, 𝜏1++[𝜖′

1
]⟩ →∗ ⟨𝑐2, 𝜏1++[𝜖′

1
]++𝜏 ′++[(¬𝜖𝑏 )]++𝜏 ′3⟩

∧TL(𝜏3) ∩ TL(𝜏 ′
3
) = ∅ ∧ cnt(𝜏 ′, 𝜋2 (𝜖𝑏 )) = cnt(𝜏, 𝜋2 (𝜖𝑏 )) ∧ 𝜖2 ∈ 𝜏3 ∧ 𝜖2 ∉ 𝜏 ′

3

ª®®®¬), (2c)

There are several components in this definition. The part with label (2a) requires that 𝜖1 and 𝜖1
differ in their value (Diff(𝜖1, 𝜖′1)). The next two parts (2b) and (2c) capture the value dependency

and control dependency, respectively. As in the literature on non-interference, and following [10],

we formulate these dependencies as relational properties, i.e. in terms of two different traces of

execution. We force these two traces to differ by using the event 𝜖1 in one and 𝜖′
1
in the other. For

the value dependency we check whether the change also create a change in the value of 𝜖2 or not.

We additionally check that the two events we consider appear the same number of times in the two

traces - this to make sure that if the events are generated by assignments in a loop, we consider

the same iterations. For the control dependency we check whether the change in 𝜖1 affect the

appearance in the computation of 𝜖2 or not. For this we require the presence of a test event whose

value is affected by the change in 𝜖1 in order to guarantee that the computation goes through a

control flow guard. Similarly to the previous condition, we additionally check that the two test

events we consider appear the same number of times in the two traces.

We can now extend the dependency relation to variables by considering all the assignment

events generated during the program’s execution.

Definition 3 (Variable May-Dependency). A variable 𝑥𝑙2
2
∈ LV(𝑐) may-dependend on the

variable 𝑥𝑙1
1
∈ LV(𝑐) in a program 𝑐 , DEPvar (𝑥𝑙1

1
, 𝑥

𝑙2
2
, 𝑐), iff

∃𝜖1, 𝜖2 ∈ Easn, 𝜏 ∈ T . 𝜋1 (𝜖1)𝜋2 (𝜖1 ) = 𝑥
𝑙1
1
∧ 𝜋1 (𝜖2)𝜋2 (𝜖2 ) = 𝑥

𝑙2
2
∧ DEPe (𝜖1, 𝜖2, 𝜏, 𝑐)

Notice that in the definition above we can also have that the two variables are the same, this

allow us to capture self-dependencies.

4.2 Semantics-based Dependency Graph
We can now define the semantics-based dependency graph of a program 𝑐 . We want this graph to

combines quantitative reachability information with dependency information.

7
The formal definition is in the supplementary material

8
We consider here dependencies between assignment events. This simplifies the definition and is enough for the stating the

following definitions. The full definition is in the supplementary material.
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Definition 4 (Semantics-based Dependency Graph). Given a program 𝑐 , its semantics-based

dependency graph Gtrace (𝑐) = (Vtrace (𝑐), Etrace (𝑐), Wtrace (𝑐), Qtrace (𝑐)) is defined as follows,

Vertices Vtrace (𝑐) :=

{
𝑥𝑙

��� 𝑥𝑙 ∈ LV(𝑐)}
Directed Edges Etrace (𝑐) :=

{
(𝑥𝑖 , 𝑦 𝑗 )

�� 𝑥𝑖 , 𝑦 𝑗 ∈ LV(𝑐) ∧ DEPvar (𝑥𝑖 , 𝑦 𝑗 , 𝑐)}
Weights Wtrace (𝑐) := {(𝑥𝑙 ,𝑤) | 𝑤 : T0 (𝑐) → N ∧ 𝑥𝑙 ∈ LV(𝑐)

∧∀𝜏0 ∈ T0 (𝑐), 𝜏 ′ ∈ T . ⟨𝑐, 𝜏0⟩ →∗ ⟨skip, 𝜏0++𝜏 ′⟩ ∧𝑤 (𝜏0) = cnt(𝜏 ′, 𝑙)}
Query Annotations Qtrace (𝑐) :=

{
(𝑥𝑙 , 𝑛)

��� 𝑥𝑙 ∈ LV(𝑐) ∧ (𝑛 = 1⇔ 𝑥𝑙 ∈ QV(𝑐)) (∧𝑛 = 0⇔ 𝑥𝑙 ∉ QV(𝑐))
} ,

A semantics-based dependency graph Gtrace (𝑐) = (Vtrace (𝑐), Etrace (𝑐), Wtrace (𝑐), Qtrace (𝑐)) is well-formed if
and only if {𝑥𝑙 | (𝑥𝑙 ,𝑤) ∈ Wtrace (𝑐)} = Vtrace (𝑐).

As we discussed before, vertices and query annotations are just read out from the program 𝑐 .

We have an edge in Etrace (𝑐) if we have a may dependency between two labeled variables in 𝑐 . A

weight function𝑤 ∈ Wtrace (𝑐) is a function that for every starting trace 𝜏0 ∈ T0 (𝑐) gives the number

of times the assignment of the corresponding vertex 𝑥𝑙 is visited. Notice that weight functions are

total and with range N. This means that if a program 𝑐 has some non-terminating behavior, the set

Wtrace (𝑐) will be empty. To rule out this situation, we consider as well-formed only graphs which

have a weight for every vertex. In the rest of the paper we will implicitly consider only well-formed

semantics-based dependency graphs.

4.3 Trace-based Adaptivity
We can now define the adaptivity of a program formally. This notion is formulated in terms of an

initial trace, specifying the value of the input variables, as the walk on the graph Gtrace (𝑐), which
has the largest number of query requests.

Definition 5 (Walk on Gtrace (𝑐)). Given the semantics-based dependency graph Gtrace (𝑐) =
(Vtrace, Etrace, Wtrace, Qtrace) of a program 𝑐 , a walk 𝑘 : T0 (𝑐) → N on Gtrace (𝑐) is a function that
given as input an initial trace 𝜏0 returns a sequence of edges (𝑒1 . . . 𝑒𝑛−1) for which there is a sequence
of vertices (𝑣1, . . . , 𝑣𝑛) such that:
• 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) ∈ Etrace for every 1 ≤ 𝑖 < 𝑛.
• every 𝑣𝑖 ∈ Vtrace and (𝑣𝑖 ,𝑤𝑖 ) ∈ Wtrace, 𝑣𝑖 appears in (𝑣1, . . . , 𝑣𝑛) at most𝑤 (𝜏0) times.

(𝑣1, . . . , 𝑣𝑛) is the vertex sequence of 𝑘 (𝜏0) and the length of 𝑘 (𝜏0) is the number of vertices in its vertex
sequence, i.e., |𝑘 (𝜏0) | = 𝑛. We denote byWK(Gtrace (𝑐)) the set of all the walks 𝑘 in Gtrace (𝑐).

Because for the adaptivity we are interested in the dependency between queries, we calculate a

special “length” of a walk, the query length, by counting only the vertices corresponding to queries.

Definition 6 (Query Length). Given the semantics-based dependency graph Gtrace (𝑐) of a
program 𝑐 , and a walk 𝑘 ∈ WK(Gtrace (𝑐)), the query length of 𝑘 is a function lenq (𝑘) : T0 (𝑐) → N
that given an initial trace 𝜏0 returns the number of vertices which correspond to query variables in the
vertices sequence, (𝑣1, . . . , 𝑣𝑛) as follows,

lenq (𝑘) (𝜏0) = |
(
𝑣 | 𝑣 ∈ (𝑣1, . . . , 𝑣𝑛) ∧ Q(𝑣) = 1

)
|.

Definition 7 (Adaptivity of a Program). Given a program 𝑐 , its adaptivity 𝐴(𝑐) is function
𝐴(𝑐) : T0 (𝑐) → N such that for an initial trace 𝜏0 ∈ T0 (𝑐),

𝐴(𝑐) (𝜏0) = max

{
lenq (𝑘) (𝜏0) | 𝑘 ∈ WK(Gtrace (𝑐))

}
5 THE ADAPTIVITY ANALYSIS ALGORITHM - ADAPTFUN
In this section, we present our program analysis AdaptFun for computing an upper bound on the

adaptivity of a given program 𝑐 . The high level idea behind AdaptFun is to first build an estimated
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[𝑎 ← 0]0; [ 𝑗 ← 𝑘 ]1;
while [ 𝑗 > 0]2 do(
[𝑥 ← query(𝜒 [ 𝑗 ] ) ]3;
[ 𝑗 ← 𝑗 − 1]4;
[𝑎 ← 𝑥 + 𝑎]5

)
;

[𝑙 ← query(𝜒 [𝑘 ] ∗ 𝑎) ]6

(a)

0 1

2

3

45

6

ex

⊤

𝑗 ′ ≤ 𝑘

𝑗 > 0

⊤𝑗 ′ ≤ 𝑗 − 1

⊤

𝑗 ≤ 0

⊤

(b)

0 : 1 1 : 1

2 : 𝑘

3 : 𝑘

4 : 𝑘5 : 𝑘

6 : 1

ex : 1

⊤

𝑗 ′ ≤ 𝑘

𝑗 > 0

⊤𝑗 ′ ≤ 𝑗 − 1

⊤

𝑗 ≤ 0

⊤

(c)
Fig. 6. (a) The same towRounds(k) program as Figure 3 (b) The abstract control flow graph,
absG(twoRounds(k)) (c) absG(twoRounds(k)) with the reachability bound.

dependency graph Gest(c) of a program 𝑐 (Section 5.1) which overapproximates the semantics-based

dependency graph in two dimensions: it overapproximates the dependencies between assigned

variables (Section 5.1.2), and, it overapproximates the weights (Section 5.1.3). Then, AdaptFun uses

a custom algorithm to estimate the longest walk on this graph, providing in this way an upper

bound on the adaptivity of the program.

Given a program 𝑐 , the set of vertices Vest (𝑐) and query annotations Qest (𝑐) of the estimated
dependency graph can be computed by simply scanning the program 𝑐 . These set can be computed

precisely and correspond to the same sets in the semantics-based dependency graph. This means

that Gest (𝑐) has the same underlying vertex structure as the semantics-based graph Gtrace (𝑐). The
differences will be in the sets of edges and weights.

5.1 Weight and Edge Estimation
The set of edges Eest (𝑐) and the set of weights West (𝑐) of the estimated dependency graph are

estimated through an analysis combining control flow, data flow, and loop bound analysis. These

analyses are naturally described over an Abstract Transition Graph of the input program, which we

describe next.

5.1.1 Abstract Transition Graph. We say that we have a transition from a program point 𝑙 to a

program point 𝑙 ′ if and only if the command with label 𝑙 ′ can execute right after the execution of

the command with label 𝑙 . The Abstract Transition Graph absG(𝑐) of a program 𝑐 is a graph with

the set of labels of program points in 𝑐 (including a label ex for the exit point) as the set of vertices

absV(𝑐), and with the set of transitions in 𝑐 as the set of edges absE(𝑐). Each edge of the graph is

annotated with either the symbol ⊤, a boolean expression or a difference constraint [33].
A difference constraint is an inequality of the form 𝑥 ′ ≤ 𝑦 + 𝑣 or 𝑥 ′ ≤ 𝑣 where 𝑥,𝑦 are variables

and 𝑣 ∈ SC is a symbolic constant: either a natural number, the symbol∞, an input variable or a

symbol 𝑄𝑚 representing a query request. We denote by DC the set of difference constraints.

A difference constraint on an edge, 𝑙
𝑥 ′≤𝑦+𝑣
−−−−−−→ 𝑙 ′ or 𝑙

𝑥 ′≤𝑣−−−−→ 𝑙 ′, denotes that after executing the

command at location 𝑙 the value of the variable 𝑥 is at most the value of the expression 𝑦 + 𝑣 resp. 𝑣
before the execution of the command 𝑙 ′. A boolean value 𝑏 on an edge, 𝑙

𝑏−→ 𝑙 ′, denotes that after
evaluating the guard of an if or a while command with label 𝑙 , 𝑏 holds and the next command to be

executed is the one with label 𝑙 ′. A ⊤ symbol on an edge, 𝑙
⊤−→ 𝑙 ′ denotes that the command with

label 𝑙 is a skip, and the commands that do not interfere with any loop counter variable.

We compute difference constraints and the other annotation via a simple program abstraction

method adopted from [33], described in details in the supplementary material.

Example. We show in Fig. 6(b) the abstract control flow graph, absG(twoRounds(k)) of the
twoRounds(k) program we gave in Fig. 3(a) and which we also report in Fig. 6(a).
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5.1.2 Edge Estimation. The set of edges Eest (𝑐) is estimated through a combined data and control

flow analysis with three components.

Reaching definition analysis: The first component is a reaching definition analysis computing

for each label 𝑙 in the graph absG(𝑐) the set of labeled variables that may reach 𝑙 as follows.

(1). For each label 𝑙 , the analysis generates two initial sets of labeled variables, 𝑖𝑛 and 𝑜𝑢𝑡 , containing

all the labeled variables 𝑥𝑙 that are newly generated but not yet reassigned before and after executing

the command 𝑙 .

(2). The analysis iterates over absG(𝑐), and updates 𝑖𝑛(𝑙) and 𝑜𝑢𝑡 (𝑙) until they are stable. The final

𝑖𝑛(𝑙) is the set of reaching definitions RD(𝑙, 𝑐) for 𝑙 .
Feasible data-flow analysis: The second component is a feasible data-flow analysis computing

for every pair 𝑥𝑖 , 𝑦 𝑗 ∈ LV(𝑐) whether there is a flow from 𝑥𝑖 to 𝑦 𝑗
. This analysis is based on a

relation flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐) built over the sets RD(𝑙, 𝑐) for every location 𝑙 . This relation is defined as:

Definition 8 (Feasible Data-Flow). Given a program 𝑐 and two labeled variables 𝑥𝑖 , 𝑦 𝑗 in this
program, flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐) is
flowsTo(𝑥𝑖 , 𝑦 𝑗 , [𝑦 ← 𝑒 ]𝑙 ) ≜ (𝑥𝑖 , 𝑦 𝑗 ) ∈ { (𝑥𝑖 , 𝑦𝑙 ) |𝑥 ∈ FV(𝑒 ) ∧ 𝑥𝑖 ∈ RD(𝑙, [𝑦 ← 𝑒 ]𝑙 ) }
flowsTo(𝑥𝑖 , 𝑦 𝑗 , [𝑦 ← query(𝜓 ) ]𝑙 ) ≜ (𝑥𝑖 , 𝑦 𝑗 ) ∈ { (𝑥𝑖 , 𝑦𝑙 ) |𝑥 ∈ FV(𝜓 ) ∧ 𝑥𝑖 ∈ RD(𝑙, [𝑦 ← query(𝜓 ) ]𝑙 ) }
flowsTo(𝑥𝑖 , 𝑦 𝑗 , [skip]𝑙 ) = ∅
flowsTo(𝑥𝑖 , 𝑦 𝑗 , if ( [𝑏 ]𝑙 , 𝑐1, 𝑐2 ) ) ≜ flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐1 ) ∨ flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐2 )

∨(𝑥𝑖 , 𝑦 𝑗 ) ∈
{
(𝑥𝑖 , 𝑦 𝑗 ) |𝑥 ∈ FV(𝑏 ) ∧ 𝑥𝑖 ∈ RD(𝑙, if ( [𝑏 ]𝑙 , 𝑐1, 𝑐2 ) ) ∧ 𝑦 𝑗 ∈ LV(𝑐1 )

}
∨(𝑥𝑖 , 𝑦 𝑗 ) ∈

{
(𝑥𝑖 , 𝑦 𝑗 ) |𝑥 ∈ FV(𝑏 ) ∧ 𝑥𝑖 ∈ RD(𝑙, if ( [𝑏 ]𝑙 , 𝑐1, 𝑐2 ) ) ∧ 𝑦 𝑗 ∈ LV(𝑐2 )

}
flowsTo(𝑥𝑖 , 𝑦 𝑗 , while [𝑏 ]𝑙 do 𝑐𝑤 ) ≜ flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐𝑤 )∨

(𝑥𝑖 , 𝑦 𝑗 ) ∈
{
(𝑥𝑖 , 𝑦 𝑗 ) |𝑥 ∈ FV(𝑏 ) ∧ 𝑥𝑖 ∈ RD(𝑙, while [𝑏 ]𝑙 do 𝑐𝑤 ) ∧ 𝑦 𝑗 ∈ LV(𝑐𝑤 )

}
flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐1;𝑐2 ) ≜ flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐1 ) ∨ flowsTo(𝑥𝑖 , 𝑦 𝑗 , 𝑐2 )

This relation gives us an overapproximation of the variable may-dependency relation for direct

dependencies (dependencies that do not go through other variables).

Edge Construction: The third component constructs an edge by computing a transitive closure

(through other variables) of the flowsTo relation. There is a directed edge from 𝑥𝑖 to 𝑦 𝑗
if and only

if there is chain of of variables in the flowsTo relation between 𝑥𝑖 and 𝑦 𝑗
. This is defined as follows:

Eest (𝑐) ≜ {(𝑦 𝑗 , 𝑥𝑖 ) | 𝑦 𝑗 , 𝑥𝑖 ∈ Vest (𝑐) ∧ ∃𝑛, 𝑧𝑟1
1
, . . . , 𝑧

𝑟𝑛
𝑛 ∈ LV(𝑐) .

𝑛 ≥ 0 ∧ flowsTo(𝑥𝑖 , 𝑧𝑟1
1
, 𝑐) ∧ · · · ∧ flowsTo(𝑧𝑟𝑛𝑛 , 𝑦 𝑗 , 𝑐)}

We prove that the set Eest (𝑐) soundly approximates the set Gtrace (𝑐).
Lemma 5.1 (Mapping from Egdes of Gtrace to Gest). For every program 𝑐 we have:

∀𝑒 = (𝑣1, 𝑣2) ∈ Etrace (𝑐) . ∃𝑒′ ∈ Eest (𝑐) . 𝑒′ = (𝑣1, 𝑣2)
Example. Consider Fig. 3(c), the edge 𝑙6 → 𝑎5 is built by tbeflowsTo(𝑙6, 𝑎5, 𝑐) relation because 𝑎

is used directly in the query expression 𝜒 [𝑘] ∗ 𝑎 and we also have 𝑎5 ∈ RD(6, twoRounds(k)) from
the reaching definition analysis. The edge 𝑥3 → 𝑗5 represents the control flow from 𝑗5 to 𝑥3, which

is soundly approximated by our flowsTo relation. The edge 𝑙6 → 𝑥3 is produced by the transitivity

of flowsTo(𝑙6, 𝑎5, 𝑐) and flowsTo(𝑎5, 𝑥3, 𝑐).

5.1.3 Weight Estimation. The set West (𝑐) of weights for the estimated dependency graph is es-

timated from the Abstract Transition Graph absG(𝑐) of 𝑐 using reachability-bound analysis [22].
Specifically, we estimate as the weight of a node with label 𝑙 a symbolic upper bounds on the exe-

cution times of the command with label 𝑙 obtained by reachability-bound analysis. These symbolic

upper bounds are expressions with the input variables as free variables, hence they correspond to

the weight functions in the semantics-based dependency graphs.

Our reachability-bound algorithm adapts to our setting ideas from previous work [32, 33, 39].

Specifically, it provides an upper bound on the number of times every command can be executed

by using three steps.
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(1) This steps assigns to each edge 𝑙
𝑑𝑐−−→ 𝑙 ′ ∈ absE(𝑐) a local bound as follows. We look at the

strongly connected components of absG(𝑐). If the edge does not belong to any strongly

connected components, then the local bound is 1, representing the fact that the edge is not

in a loop and so it get executed at most once. If the edge belongs to a strongly connected

component and one of the variables 𝑥 in 𝑑𝑐 decreases, then the local bound is 𝑥 . Otherwise, if

the edge belongs to a strongly connected component and there is a variable 𝑦 that decreases

in the difference constraint of some other edge, and if by removing this other edge, the

original edge does not belong anymore to the strongly connected components of absG(𝑐),
then the local bound is 𝑦. Otherwise, the local bound is∞. Notice that the output is either a
symbolic constant in SC or a variable that is not an input variable.

(2) This step aims at determining the reachability-bound TB(𝑒, 𝑐) of every edge 𝑒 ∈ Eest (𝑐).
Every bound is a symbolic expression built out of symbols inSC and the operations +, ∗,max.

For every edge, if the local bound of this edge computed at the previous step is a symbol in

SC then this is already the reachability-bound. If instead the local bound of the edge is a

variable 𝑦 which is not an input variable, this step will eliminate it and replace it with a

symbolic expression. In order to do this, this steps will compute two quantities: first, it will

recursively sum the reachability-bounds of all the edges whose difference constraint may

increment the variable 𝑦, plus the corresponding increment; second, it will recursively sum

the reachability-bounds of all the edges whose difference constraint may reset the variable

𝑦 to a (symbolic) expression that doesn’t depend on it, multiplied by the maximal value of

this symbolic expression. The sum of these two quantities provides the symbolic expression

that is an upper bound on the number of times the edge can be reached. To compute these

two quantities we use two mutually recursive procedures.

Using the reachability-bound TB(𝑒, 𝑐) for every edge 𝑒 = (𝑙, 𝑑𝑐, 𝑙 ′) we can provide a bound on the

visiting times of each vertex 𝑥𝑙 ∈ absV(𝑐). Formally: 𝑤 =
∑{TB(𝑒, 𝑐) |𝑒 = (𝑙, _, _)}. Notice that 𝑤

is a symbolic arithmetic expression over symbols in SC. In particular, it may contain the input

variables and so it may effectively be used as a function of the input - and capture loop bounds in

terms of these inputs.

Theorem 5.1 (Soundness of the Reachability Bounds Estimation). Let 𝑐 be a program and
West (𝑐) be its estimated weight set. Then, for each (𝑥𝑙 ,𝑤) ∈ West (𝑐), 𝜏0 ∈ T0 (𝑐), 𝜏 ∈ T , 𝑣 ∈ N we have:

if ⟨𝑐, 𝜏0⟩ →∗ ⟨skip, 𝜏0++𝜏⟩ ∧ ⟨𝜏0,𝑤⟩ ⇓𝑒 𝑣 ∧ then cnt(𝜏, 𝑙) ≤ 𝑣

Notice that in this theorem, the evaluation ⟨𝜏0,𝑤⟩ ⇓𝑒 𝑣 is needed in order to obtain a concrete

value 𝑣 from the symbolic weight𝑤 by specifying a value for the input variables through 𝜏0.

Example. Consider again Fig. 3(c), the estimated weight for 𝑎5 is 𝑘 , and this is a sound estimation.

For an arbitrary 𝜏0 ∈ T0 (𝑐), we know that ⟨𝜏0, 𝑘⟩ ⇓𝑒 𝜌 (𝜏0)𝑘 and by the weight𝑤𝑘 for the vertex 𝑎5

(as in Figure 3(b)) we know𝑤𝑘 (𝜏0) = 𝜌 (𝜏0)𝑘 .

5.2 Adaptivity Upper Bound Computation
We estimate the adaptivity upper bound, Aest (𝑐) for a program 𝑐 as the maximum query length

over all finite walks in its estimated dependency graph, Gest (𝑐).

Definition 9 (Estimated Adaptivity). Given a program 𝑐 and its estimated dependency graph
Gest (𝑐) the estimated adaptivity for 𝑐 is

Aest (𝑐) ≜ max{lenq (𝑘) | 𝑘 ∈ WK(Gest (𝑐))}.

Notice that different from a walk on Gtrace (𝑐), a walk 𝑘 ∈ WK(Gest (𝑐)) on the graph Gest (𝑐)
does not rely on an initial trace. This because, similarly to what we did for the weights in West (𝑐)
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in the previous section, we use symbolic expressions over input variables. Similarly, the adaptivity

bound Aest (𝑐) will also be a symbolic arithmetic expression over the input variables. With this

symbolic expression we can prove the upper bound sound with respect to any initial trace.

Theorem 5.2 (Soundness of Aest (𝑐)). For every program 𝑐 , its estimated adaptivity is a sound
upper bound of its adaptivity.

∀𝜏0 ∈ T0 (𝑐), 𝑣 ∈ N∞ . ⟨Aest (𝑐), 𝜏0⟩ ⇓𝑒 𝑣 =⇒ 𝐴(𝑐) (𝜏0) ≤ 𝑣 .

Symbolic expressions as used in the weight are great to express symbolic bounds but make

the computation of a maximal walk harder. Specifically, one has to face two challenges. The first

is non-termination. A naive traversing strategy leads to non-termination because the weight of

each vertex in Gest (𝑐) is a symbolic expression containing input variables. We could try to use a

depth first search strategy using the longest weighted path to approximate the longest finite walk

with the weight as its visiting time. However, these approach would face the second challenge:

approximation. It would consistently and considerably over-approximate the adaptivity.

To address these two challenges we design an algorithm AdaptBD combining Depth First Search

and Breadth First Search. The idea of this algorithm is to reduce the task of computing the longest

walk to the task of computing local versions of the adaptivity on the maximal strongly connected

components (SCC) of the graph Gest (𝑐) and then compose them into the program adaptivity.

The algorithm uses another algorithm AdaptBDSCC recursively, in order to find the longest walk

for a strong connected component (SCC)of Gest (𝑐). The pseudocode of AdaptBDSCC is given as

Algorithm 1

Algorithm 1 Adaptivity Bound Algorithm on An SCC (AdaptBDscc (c, SCCi))
Require: The program 𝑐 , A strong connected component of Gest (𝑐 ) : SCCi = (V𝑖 , E𝑖 , W𝑖 , Q𝑖 )
1: init. rscc: Ain List with initial value 0.

2: init. visited : {0, 1} List with initial value 0; r : Ain List, initial value∞;
flowcapacity: Ain List, initial value∞; querynum: INT List, initial value Q𝑖 (𝑣) .

3: if |V𝑖 | = 1 and |E𝑖 | = 0: return Q(𝑣)
4: def dfs(G, s, visited) :
5: for every vertex 𝑣 connected by a directed edge from 𝑠 :

6: if visited[𝑣 ] = false:
7: flowcapacity[v] = min(Wi (v), flowcapacity[s] ) ; querynum[v] = querynum[s] + Qi (v) ;
8: r[v] = max(r[v], flowcapacity[v] × querynum[v] ) ;
9: visited[𝑣 ] = 1; dfs(G, v, visited) ;
10: else: #{There is a cycle finished}
11: r[v] = max(r[v], r[s] +min(Wi (v), flowcapacity[s]) ∗ (querynum[s] + Qi (v)));
12: return r[c]
13: for every vertex 𝑣 in V𝑖 :
14: initialize the visited, r, flowcapacity, querynum with the same value at line:2.

15: rscc = max(rscc, dfs(SCCi, v, visited) ) ;
16: return rscc

This algorithm takes as input the program 𝑐 and a SCCi of Gest (𝑐), and outputs an adaptivity

bound for SCCi. If SCCi contains only one vertex, 𝑥𝑙 without any edge, AdaptBDscc returns the

query annotation of 𝑥𝑙 as the adaptivity. If SCCi contains at least one edge, AdaptBDscc:

(1) first collects all the paths in SCCi;
(2) it then calculates the adaptivity of every path by the method dfs;
(3) in the end, it outputs the maximal adaptivity among all paths as the adaptivity of SCCi.

By the property of SCC, the paths collected in step 1 are all simple cycles with the same starting

and ending vertex. Step 2 is the key step. It recursively computes the adaptivity upper bound on
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the fly of paths collected through a DFS procedure dfs (lines: 4-13). This procedure guarantees that
the visiting times of each vertex is upper bounded by its weight, and addresses the approximation

challenge, via two special lists parameters flowcapacity and querynum (lines:7-11).

flowcapacity is a list of symbolic expressions A𝑖𝑛 which tracks the minimum weight when

searching a path, and updates the weight when the path reaches a certain vertex. querynum is a list

of integer initialized with the value of the query annotation Q𝑖 (𝑣) for every vertex. It tracks the

total number of vertices with query annotation 1 along the path. The operation at line: 8 and line:

11 implements the operation flowcapacity[v] × querynum[v]. Because flowcapacity[v] is the
minimum weight over this path, this guarantees that every vertex on the estimated walk is allowed

to be visited at most flowcapacity[v], and this walk is a valid finite walk. Then querynum[v]
guarantees that flowcapacity[v] × querynum[v] computes an accurate query length because

querynum[v] is only the number of the vertices with query annotation 1, giving a tight bound

without losing the soundness.

Theorem 5.3 (Soundness of AdaptBD). For every program 𝑐 , we have
AdaptBD(Gest (𝑐)) ≥ Aest (𝑐).

6 EXAMPLES
We illustrate here how our analysis work on two different examples. Our first example, Algorithm

multipleRounds in Fig. 7(a), is a simplified form of themonitor argument by Rogers et al. [31]. The
input 𝑘 is the number of iterations. It uses a list 𝐼 to track queries. Specifically at each iteration

it updates 𝐼 by using the result of a query which relies on 𝐼 : query(𝜒 [𝐼 ]). After 𝑘 iterations, the

algorithm returns the columns of the hidden database 𝐷 which are not contained in the tracking list

𝐼 . The functions updnscore(𝑝, 𝑎), updcscore(𝑝, 𝑎), update(𝐼 , 𝑛𝑠, 𝑐𝑠) simplify the computations of

updating 𝑛𝑠 , 𝑐𝑠 and 𝐼 . They depends on the result of the query but they do not perform queries them-

selvesDifferent from the code in the example twoRounds(k), the query request, [𝑎 ← query(𝐼 )]6,
in each loop iteration depends on the tracking list 𝐼 , which in turn depends on all the querieas

from previous iterations. In this sense, all these 𝑘 queries are fully adaptively chosen, and so the

adaptivity is 𝑘 . The estimated dependency graph Gest (multipleRounds(k)) is presented in Fig. 7(b)

and we omitted the semantics-based dependency graph Gtrace (multipleRounds(k)) because it has
the same topology and only differ in weights. Our program analysis AdaptFun provides a tight

upper bound for this example using AdaptBD(multipleRounds(k)). It first finds a path on the

graph Gest (multipleRounds(k)) 𝑎6 :
𝑘
1
→ 𝐼 9 :

𝑘
0
→ 𝑛𝑠7 :

𝑘
0
with three weighted vertices. Then

AdaptBD algorithm transforms this path into a walk 𝑎6 : 𝑘
1
→ 𝐼 9 : 𝑘

0
→ 𝑛𝑠7 : 𝑘

0
→ 𝑎6 : 𝑘

1
· · · , where

𝑎6, 𝐼 9, 𝑛𝑠7 are all visited 𝑘 times respectively. So Aest (multipleRounds(k)) = 𝑘 . We know for any

initial trace 𝜏0, ⟨𝜏0, 𝑘⟩ ⇓𝑒 𝜌 (𝜏0)𝑘 , i.e., 𝐴(multipleRounds(k)) (𝜏0) ≤ 𝜌 (𝜏0)𝑘 for any 𝜏0, and so what

we have produced is a tight and sound bound.

We want to show an example where our definition of adaptivity (Def. 7) itself over-approximates

the intuitive adaptivity. Our second example multiRoundsS(k) in Fig. 8(a) demonstrates this over-

approximation. It is a variant of the multiple rounds strategy with input 𝑘 . In each iteration, the

query query(𝜒 [𝑦] + 𝑝) in line 7 is based on previous query results stored in 𝑝 and 𝑦. Different

from Ex. 6, only the query answer from the (𝑘 − 2)𝑡ℎ iteration is used in the query request

[𝑝 ← query(𝜒 [𝑦] + 𝑝)]7. This is because the execution will reset the value of 𝑝 to 0 in all the

other iterations after this query request (line 10). In this way, all the query answers stored in 𝑝 are

erased and are not used in the query request at the next iteration, except the one at the (𝑘 − 2)𝑡ℎ
iteration. So multiRoundsS(k)’s adaptivity rounds is only 2. However, our Def. 7 fails to realize

that there is only dependency relation between 𝑝7 and 𝑝7 in one iteration, but not in others. As the

Gtrace (multiRoundsS(k)) in Fig. 8(b) shows, there is an edge from 𝑝7 to itself representing Variable

17



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

Anon.

multipleRounds(k) ≜
[ 𝑗 ← 𝑘 ]0; [𝐼 ← []]1;
[𝑛𝑠 ← 0]2; [𝑐𝑠 ← 0]3;
while [ 𝑗 > 0]4 do(
[ 𝑗 ← 𝑗 − 1]5; [𝑎 ← query(𝐼 ) ]6;
[𝑛𝑠 ← updnscore(𝑛𝑠, 𝑎) ]7;
[𝑐𝑠 ← updcscore(𝑐𝑠, 𝑎) ]8;
[𝐼 ← updI(𝐼 , 𝑛𝑠, 𝑐𝑠 ) ]9

)
(a)

𝐼 1 : 1
0

𝑛𝑠2 : 1
0

𝑐𝑠3 : 1
0

𝑎6 : 𝑘
1

𝑛𝑠7 : 𝑘
0

𝑐𝑠8 : 𝑘
0

𝐼 9 : 𝑘
0

𝑗0 : 1
0

𝑗5 : 𝑘
0

(b)
Fig. 7. (a) The simplified multiple rounds example (b) The estimated dependency graph from AdaptFun

multiRoundsS(k)
[ 𝑗 ← 0]0; [𝑧 ← query(0) ]1; [𝑝 ← 0]2;
if ( [𝑘 = 0]3, [𝑦 ← query(𝑧 ) ]4, [skip]5 ) ;
while [ 𝑗 ≠ 𝑘 ]6 do(
[𝑝 ← query(𝜒 [𝑦 ] + 𝑝 ) ]7; [ 𝑗 ← 𝑗 + 1]8

if ( [ 𝑗 ≠ 𝑘 − 2]9, [𝑝 ← 0]10, [skip]10 )
)
;

(a)

𝑧1 :
𝑤
𝑧1

1

𝑝2 :
𝑤
𝑝2

0

𝑦4 :
𝑤
𝑦4

1

𝑝7 :
𝑤
𝑝7

1

𝑝10 :
𝑤
𝑝10

0

𝑗0 :
𝑤

𝑗0

0

𝑗8 :
𝑤

𝑗8

0

(b)
Fig. 8. (a) The multi rounds single example (b) The semantics-based dependency graph.

May-Dependency of 𝑝7 on itself, and 𝑝7’s visiting times,𝑤 (𝜏0).𝑤 (𝜏0) counts the execution times of

command [𝑝 ← query(𝜒 [𝑦] + 𝑝)]7. It equals to the loop iteration numbers, i.e., 𝑘’s initial value.

Then, as the dotted arrows, longest walk is 𝑝7 → · · · → 𝑝7 → 𝑦4 → 𝑧1 computes 2+𝑤𝑝7 (𝜏0), instead
of 2. It is worth to stress that our algorithm still compute an accurate bound w.r.t this definition,

even if the definition itself is over-approximating. Indeed, the AdaptFun give us adaptivity 2 + 𝑘 .

7 IMPLEMENTATION
We implemented AdaptFun as a tool which takes a labeled program as input and outputs the upper

bound on the program adaptivity and the total number of queries that the program runs. This

implementation consists of a module written in OCaml for the generation of the estimated graph

Gest, and a module written in Python for the weight estimation algorithm (Section 5.1.3) and the

algorithm AdaptBD (Section 5.2). The OCaml program takes the labeled program as input and

outputs a version of the graph Gest (without weights) and the abstract transition graph absG for
the program. These two objects are then fed into the python program which computes the weights,

and outputs the adaptivity bound and the query number. We evaluated this implementation on 25

examples with performances summarized in Tab. 1. The 1
𝑠𝑡
column is the example name. For each

example 𝑐 , the 2𝑛𝑑 column is its adaptivity rounds, AdaptFun outputs are in the the 3
𝑟𝑑

and 4
𝑡ℎ

columns. They are the adaptivity upper bound and 𝑐’s total query requests #. The last 4 columns

are AdaptFun’s performance w.r.t. the program lines. We track the running time of the OCaml code

for parsing the program and generating the Gest (𝑐), and the running times of the weight analysis

and the AdaptBD(𝑐) in Python. We implemented two weight estimation methods. The first one

(referred as I in Tab.1) is the one we presented formally in Section 5.1. Unfortunately, this method

is accurate but slow, it doesn’t performs well with big program. The second one (referred as II) is a

relaxation of the first one. It is more efficient but it over-approximate complicated loops. Based on

the two implementations, our AdaptFun produces two bounds on the adaptivity, corresponding

to the left and right side (I | II) in the 3
𝑟𝑑
, 4

𝑡ℎ
and 6

𝑡ℎ
columns

9
. The first 5 programs are adapted

9
When the method II produces the same results as I, we omit them and use the symbol −.
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from classical data analysis algorithms. AdaptFun computes tight adaptivity bound for the first 3.

For the forth program multiRoundsO(k), AdaptFun over-approximates the adaptivity as 1 + 2 ∗ 𝑘
because of its path-insensitivity. The fifth program is the one in Example 6, where AdaptFun
outputs the tight bound but we give a loose definition for its actual adaptivity. The programs from

Tab. 1 line:6-17 all have small size but complex structures, to test the programs under different

situations including data, control dependency, the multiple paths nested loop with related counters,

etc. Both implementations compute tight bounds for examples in line:6-14 and over-approximate

the adaptivities for 15
𝑡ℎ

and 16
𝑡ℎ

due to path-insensitivity. For the 17
𝑡ℎ

one, implementation I

gives tight bound bound while II gives loose bound, so we keep both implementations. The last

six programs are big but simple, to test the performance limitation. From the evaluation results,

the performance bottleneck is the weight estimation algorithm. The implementation I is unable to

evaluate them in a reasonable time period, denoted by ∗ on the left side. While the implementation

II computes the adaptivity for them effectively on the right side.

Table 1. Experimental results of AdaptFun implementation

Program 𝑐 adaptivity
AdaptFun performance

AdaptBD(𝑐 ) (I | II) query# (I | II) lines

running time (second)

Ocaml Weight AdaptBD

twoRounds(k) 2 2 |− 𝑘 + 1 |− 8 0.0005 0.0017 | 0.0002 0.0003

multiRounds(k) 𝑘 𝑘 |max(1, 𝑘 ) 𝑘 |− 10 0.0012 0.0017 | 0.0002 0.0002

lRGD(k, r) 𝑘 𝑘 |max(1, 𝑘 ) 2𝑘 |− 10 0.0015 0.0072 | 0.0002 0.0002

mROdd(k) 1 + 𝑘 2 +max(1, 2𝑘 ) |− 1 + 3𝑘 |− 10 0.0015 0.0061 | 0.0002 0.0002

mRSingle(k) 2 1 +max(1, 𝑘 ) |− 1 + 𝑘 |1 + 𝑘 9 0.0011 0.0075 | 0.0002 0.0002

ifCD( ) 3 3 |4 3 |4 5 0.0005 0.0003 | 0.0001 0.0001

while(k) 1 + 𝑘/2 1 +max(1, 𝑘/2) |− 1 + 𝑘/2 |− 7 0.0021 0.0015| 0.0001 0.0001

whileRV(k) 1 + 2𝑘 1 + 2𝑘 |1 +max(1, 2𝑘 ) 2 + 3𝑘 |− 9 0.0016 0.0056| 0.0002 0.0001

whileVCD(k) 1 + 2𝑄𝑚 𝑄𝑚 +max(1, 2𝑄𝑚 ) | - 2 + 2𝑄𝑚 | - 6 0.0016 0.0007 |0.0002 0.0001

whileMPVCD(k) 2 +𝑄𝑚 2 +𝑄𝑚 | - 2 + 2𝑄𝑚 | - 9 0.0017 0.0043 | 0.0002 0.0001

nestWhileVD(k) 2 + 𝑘2 3 + 𝑘2 |− 1 + 𝑘 + 𝑘2 |− 10 0.0018 0.0126 | 0.0002 0.0001

nestWhileRV(k) 1 + 𝑘 + 𝑘2 2 + 𝑘 + 𝑘2 |− 2 + 𝑘 + 𝑘2 |− 10 0.0017 0.0186 | 0.0002 0.0001

nestWhileMV(k) 1 + 2𝑘 1 +max(1, 2𝑘 ) |− 1 + 𝑘 + 𝑘2 |− 10 0.0016 0.0071 | 0.0002 0.0001

nestWhileMPRV(k) 1 + 𝑘 + 𝑘2 3 + 𝑘 + 𝑘2 |− 2 + 2𝑘 + 𝑘2 |− 10 0.019 0.0999 | 0.0002 0.0002

whileM(k) 1 + 𝑘 2 +max(1, 2𝑘 ) |− 1 + 3𝑘 |− 9 0.0017 0.0062 | 0.0002 0.0001

whileM2(k) 1 + 𝑘 2 + 𝑘 |− 1 + 3𝑘 |− 9 0.0017 0.0062 | 0.0002 0.0001

nestWhileRC(k) 1 + 3𝑘 1 + 3𝑘 |2 + 3𝑘 + 𝑘2 1 + 3𝑘 |1 + 𝑘 + 𝑘2 11 0.019 0.2669 | 0.0002 0.0007

mRComplete(k, N) 𝑘 𝑘 |− 𝑘 |− 27 0.0026 85.9017 | 0.0003 0.0004

mRCompose(k) 2𝑘 2𝑘 |− 2𝑘 |− 46 0.0036 5104 | 0.0003 0.0013

seqCompose(k) 12 12 | - 326 |− 502 0.0426 1.2743 | 0.0003 0.0223

tRCompose(k) 2 ∗|2 ∗|1 + 5𝑘 + 2𝑘2 42 0.0026 * | 0.0003 0.0005

jumboS(k) max(20, 8 + 𝑘2 ) ∗|max(20, 6 + 𝑘 + 𝑘2 ) ∗|44 + 𝑘 + 𝑘2 71 0.0035 *| 0.0003 0.0085

jumbo(k) max(20, 10 + 𝑘 + 𝑘2 ) ∗|max(20, 12 + 𝑘 + 𝑘2 ) ∗|286 + 26𝑘 + 10𝑘2 502 0.0691 * | 0.0009 0.018

big(k) 22 + 𝑘 + 𝑘 ∗ 𝑘 ∗|28 + 𝑘 + 𝑘2 ∗|121 + 11𝑘 + 4𝑘2 214 0.0175 * | 0.0004 0.002

8 RELATEDWORK
Dependency Definitions and Analysis. There is a vast literature on dependency definitions and

dependency analysis. We consider a semantics definition of dependencies which consider (intrapro-

cedural) data and control dependency [8, 11, 30]. Our definition is inspired by classical works on

traditional dependency analysis [12] and noninterference [20]. Formally, our definition is similar

to the one by Cousot [10], which also identifies dependencies by considering differences in two

execution traces. However, Cousot excludes some forms of implicit dependencies, e.g. the ones

generated by empty observations, which instead we consider. Common tools to study dependencies

are dependency graphs [17]. We use here a semantics-based approach to dependency graph similar,

for example, to works by Austin and Sohi [5], Hammer et al. [23] and [24]. Our approach shares

some similarities with the use of dependency graphs in works analyzing dependencies between

events, e.g. in event programming. Memon [29] uses an event-flow graph, representing all the

possible event interactions, where vertices are GUI event edges represent pairs of events that

can be performed immediately one after the other. In a similar way, we use edges to track the

may-dependence between variables looking at all the possible interactions. Arlt et al. [4] use a

weighted edges indicating a dependency between two events, e.g. one event possibly reads data
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written by the other event, with the weight showing the intensity of the dependency (the quantity

of data involved). We also use weights but on vertices and with different meaning, they are func-

tions describing the number of times the vertices can be visited given an initial state. Differently

from all these previous works, we use a dependency graph with quantitative information needed

to identify the length of chain of dependencies. Our weight estimation is inspired by works in

complexity analysis and WCET. Specifically, it is inspired by works on reachability-bound analysis

using program abstraction and invariant inference [21, 22, 34] and work on invariant inference

through cost equations and ranking functions [2, 3, 9, 18].

Generalization in Adaptive Data Analysis. Starting from the works by Dwork et al. [15] and Hardt

and Ullman [25], several works have designed methods that ensure generalization for adaptive

data analyses [7, 13, 14, 16, 27, 31, 35, 36]. Several of these works drew inspiration from differential

privacy, a notion of formal data privacy. By limiting the influence that an individual can have

on the result of a data analysis, even in adaptive settings, differential privacy can also be used

to limit the influence that a specific data sample can have on the statistical validity of a data

analysis. This connection is actually in two directions, as discussed for example by Yeom et al. [38].

Considering this connection between generalization and privacy, it is not surprising that some of

the works on programming language techniques for privacy-preserving data analysis are related to

our work. Adaptive Fuzz [37] is a programming framework for differential privacy that is designed

around the concept of adaptivity. This framework is based on a typed functional language that

distinguish between several forms of adaptive and non-adaptive composition theorem with the

goal of achieving better upper bounds on the privacy cost. Adaptive Fuzz uses a type system and

some partial evaluation to guarantee that the programs respect differential privacy. However, it

does not include any technique to bound the number of rounds of adaptivity. Lobo-Vesga et al. [28]

propose a language for differential privacy where one can reason about the accuracy of programs

in terms of confidence intervals on the error that the use of differential privacy can generate. These

are akin to bounds on the generalization error. This language is based on a static analysis which

however cannot handle adaptivity. The way we formalize the access to the data mediated by a

mechanism is a reminiscence of how the interaction with an oracle is modeled in the verification

of security properties. As an example, the recent works by Barbosa et al. [6] and Aguirre et al. [1]

use different techniques to track the number of accesses to an oracle. However, reasoning about

the number of accesses is easier than estimating the adaptivity of these calls, as we do instead here.

9 CONCLUSION AND FUTUREWORKS
We presented AdaptFun, a program analysis useful to provide an upper bound on the adaptivity

of a data analysis, as well as on the total number of queries asked. This estimation can help data

analysts to control the generalization errors of their analyses by choosing different algorithmic

techniques based on the adaptivity. Besides, a key contribution of our works is the formalization of

the notion of adaptivity for adaptive data analysis. We showed the applicability of our approach by

implementing and experimentally evaluating our program analysis.

As future work, we plan to investigate the potential integration of AdaptFun in an adaptive data

analysis framework like Guess and check by Rogers at al. [31]. As we discussed, this framework is

designed to support adaptive data analyses with limited generalization error. As our experiments

show, this framework could benefit from the information provided by AdaptFun to provide more

precise estimate and improved confidence intervals. Another direction we will explore is to make

the uppper bounds provided by AdaptFun more precise by integrating our algorithm with a path-

sensitive approach.
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